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COMPUTER NETWORK  RESEARCH 

Advanced Research Projects  Agency 
Semiannual Technical  Report 

December 31,   1973 

This Semiannual Technical Report describes the result of one of our 
major activities during the period July  1,   1973 through December 31,   1973. 
It concerns the analysis  and control of a satellite channel used in a packet 
switching mode.    This study constitutes only one of many undertakings with 
the support of ARPA Contract DAHC  15-73-C-0368 during this period.     It 
represents one coherent  and significant piece of research  to which we devote 
this  report. 

The main body of this  report  contains  a reproduction of Simon Lam's 
Ph.D.   thesis   (supervised by  Leonard Kleinrock)  entitled,  "Packet.  Switching 
in a Multi-access  Broadcast Channel with Application  to Satellite Conmunication 
in a^Computer Network".    He  completed this dissertation in March,   1974  and it 
was published as  a report in the Computer Science Department, UCLA-ENC—7429 
In April 1974. 

The research  is  concerned with the shared use of a broadband satellite 
channel  for computer communications.    The objective is to allow a  large number 
of independent earth stations  to simultaneously share the entire  capacity of 
the given  channel  in  a random fashion.     This multi-access uplink  is subject 
to conflicts  in that more   :han one user may  attempt  to send his  fixed length 
packet  at the same time thereby causing a destructive interference among such 
conflicting packets.    The satellite is  realistically treated as  a pure 
transponcer which broadcasts back to all earth stations within its shadow 
in exact  veplica of that which it receives   (a complete packet or an interfered 
with  transiAission). 

Since ench earth station hears  the same transmission  from the satellite 
v>en any station which transmits its packet will,  after a round trip time 
delay of approximately one quarter of a second,  also hear its own  transmission 
and v/ill be  abie to determine if a destructive  conflict  occurred.     Rased on 
this  observation the study  then evaluates  the performance unde/ a particular 
random access mode referred to as  slotted aloha.     It  is  then shown that these 
channels  stable v,ith very little  loss  in throughput.    The main  contributions 
then involve the stability to put  delay trade-offs  for unstable  channels 
and the dynamic control  and estimation procedures  for  rendering these  channels 
stable. 

This  study  fits  into the use of satellite packet-switching for the satellite 
IMPs   (SIMPS)   currently being son:idered by ARPA for their intercontinental 
packet-switching satellite network  experiments. 
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ARS'IHACT 

i\i-6  report considers a packet switching technique applicable 

to packev communication using a satellite or ground radio channel. 

The objective of this research is to develop analytic models for the 

evaluation and optimization of the system performance in terms of 

stability, throughput and delay. 

Advantages of packet switched satellite and ground radio systems 

over conventional wire communications for large computer-communication 

networks are discussed. The emphasis of this research is on a high- 

speed channel shared by a large population of "small" users. The channel 

behavior is typical of "contention" systems in which the throughput van- 

ishes to zero as the load on the system increases. This phenomenon is 

called channel saturation. The channel may go into saturation as a 

result of (a) time fluctuations, and (b) stochastic fluctuations in the 

channel input. The channel response to time varying inputs is first 

studied using a deterministic approximation analysis. The effect of (b) 

is then studied through probabilistic models.  In this case, contributions 

of this research may be classified into three categories: 

(1) a coherent theory of channel behavior in which the 

key result is the characterization of stable and 

unstable channels 

(2) evaluation of channel performance such as equilibrium 

throughput-dela/ tradeoffs for stable channels and 

stability-throughput-delay tradeoffs for unstable 

channels 

(3) dynamic channel control and estimation procedures 

for optimal control of unstable channels. 



This study has several implications. First, a coherent theory of 

channel behavior has been developed, system design variables ^ave been 

identified and cperationr1 strategies for the optimization of channel 

Performance have been evniuated. These results suggest a system design 

methodology. Second, the techniques employed in characterizing the sta- 

bility behavior and evaluating dynamic channel control schemes may pro- 

fitably be applisd to probabilistic models of other contention systems. 

vi 
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CHAPTER 1 

INTROD'JmON 

In the design of a computer-iommunication network, two problems 

may be identified. One is to provide long haul communications among 

geographically scattered ccmputers and resources. The other is to 

provide local distribution of the network computing power, communica- 

tion power and resources to populations of users. 

An abstract model of a comput er-contain i cat ion network is de- 

picted in Fig. 1-1. Tne first problrm mentioned above corresponds to 

the design of the communication subnet in the figure for computer- 

TERMINAL ACCcS 
NETYYOPKS 

D 
CD 

COMPUTER 
(NODAL SWITCHING UNIT) 

COMPUTER 
(NETWORK RESOURCE) 

D TERMINAL 

Figurt 1-1.       An Abftract Modd for • Compute Communication Network. 



computer communications. The second problem corresponds to the design 

of the terminal access networks for terminal-computer communications. 

Two kinds of computers are distinguished in the model:  (1) autonomous 

computer systems which constitute resources to be ihared over the net- 

work, and (2) special purpose processors dedicated to network communi- 

cation functions and acting as nodal switching units for data flow. 

(These nodal switching units will be referred to as the nodes of a 

communication subnet.) 

The above abstract model description of a coraputer-comnunication 

network is consistent with the design philosophy of the ARPA (Advanced 

Research Projects Agency) Network [BUTT 74, CARR 70, CROC 72, FRAN 70, 

FRAN 72A, HEAR 70, KLEI 70, ORNS 72, ROBE 70, ROBE 72A]. 

In this dissertation, a packet switching technique based upon 

the random access concept of the ALOHA System [ABRA 70] will be studied 

in detail. This cechnique enables efficient sharing of a communication 

channel by a large population of users, each with a bursty input source 

(large ratio between the peak and average data rate). This packet 

switching technique may be applied to the use of satellite and ground 

radio channels for computer-computer and terminal-computer communica- 

tions respectively. The multi-access broadcast capabilities of these 

channels render them attractive solutions to (].) large communication 

subnets with nodes over wide geographically distributed area", and 

(2) large tcn/i-.al access networks with potentiallv mobile terminals. 

1. i        Present Congputer-Communication Schemes 

The simplest solution to providing communication between two 

points is to assign a dedicated channel for their use. This method 



is expensive in computer communications especially over long distances. 

Measurement studies [JACK 69, FUCH 70] conducted on time-sharing sys- 

tems indicate that both computer and terminal data streams are bursty. 

That is, the peak data rate is much larger than the average data rate. 

(The ratio between them may be as high as 2000 to 1 [ABRA 73].)  Con- 

sequently, if a high-speed point-to-poin* channel is Msed, the channel 

utilization is low since the channel is idle most of the time. On  the 

other hand, if a low-speed channel is used, the transmission delay is 

large. 

The above dilemma is caused by channel users imposing bursty 

random demands on their communication channels.  By the IJW of large 

numbers in probabiiity theory [FELL 68], the total demand at any instant 

of a large population of users is. with a high probability, approxi- 

mately equal to the sum of th^ir average demands.  Thus, if a channel 

is dynamically shared in sonu fashion among many users, the required 

channel capacity may be much less than the unshared case of dedicated 

channels. This concept is known as statistical load averaging and has 

been applied in many computer-communication schemes to various degrees 

of success.  These schemes include:  polling systems [MART 72], loop 

systems [HAYE 71, PIER 71], Asynchronous Time Division Multiplexing 

(ATOM) [CHU 69], the random access scheme in the ALC::A T^cem, and 

the store-and-forward packet switching concepts [BARA 64, KLEI 64, 

DAVI 68] implemented in the ARPA Network. 

For almost a century, circuit switching dominated t^e design 

of communication networks.  Only with the speed and cost of modem 



computers did packet communication become competitive.    It wes not 

until  1970 that the computer  (switching^  cost dropped below the com- 

munication  (bandwidth)  cost   [ROBE 74].    This also marked the first 

appearance of packet switched computer-communication netv;orks. 

In a circuit switched network,  a complete path of communication 

links must be established between two parties before they can coranuni- 

cate.    The path  (of links)  is  allocated for as  long as the two parties 

want.     In a store-and-forward packet switched network,  the communication 

is broken into convenient size packets  if information with addresses 

of source and destination attffched to each packet.     Packets are in- 

dividually routed through the ne^ork to their destinations "hopping" 

from one node to another.     In this case, the communication links are 

not allocated into paths  for specific source-destination pairs of nodes; 

instead,  each link is statistically shared by many nodes.    The large 

savings possible from fuller utilization of the communication  lirks 

justify the extra computer switching cost. 

1.2        Satellite and Radio Communications in Large Networks 

We are currently facing a booming demand for computer networks. 

For example,  a survey for 17 European nations entitled "Eurodata-- 

A Market Study on Data Communications  in Europe,   1972-1985" estimates 

that data communication volume in those countries will  soar twelvefold 

in the next dozen years.     The total number of terminals was 79,600 in 

1972;   it will  rise to 235,600 by  1976  and to 815,000 by 1985   [WR1G 73]. 

The feasibility of packet svit hed networks with up to 1000 nodes  and 

tens of thousands of terminals   is bein.^  investigated  [NAC 73,  FRAN  73]. 



These numbers are at least an order of magnitude larger than any 

other system design attempted. Extension of current computer- 

communicavion techniques to networks of such magnitude cannot be 

easily done.  For instance, the adaptive routing techniques currently 

implemented in the ARPA network cannot be directly utilized in a 

very large network because of excessive IMP processing time, memory 

requirements and tiaffic overhead [NAC 73]. The system overhead in 

conventional polling schemes is directly proportional to the number 

of terminals sharing the communication channel; such schemes are 

thus not appropriate for a large number of terminals. 

To design cost-effective computer-communication networks for 

the future, new techniques are needed which are capable of providing 

efficient high-speed computer-computer and terminal-computer communi- 

cations in a large network environment. 

The application of packet switching techniques to radio com- 

munication (both satellite and ground radio channels) provides a 

solution. 

4\^
;o is a multi-access broadcast medium. A signal generated 

by a radio transmitter may be received over a wide area by any number 

of receivers.  (This is the broadcast capability.)  Furthermore, any 

number of users may transmit signals over the same channel.   (This 

is the multi-access capability.)  Hence, a single ground radio channel 

provides a completely connected network topology for a large number 

However, if two signals (packet transmissions) at the same carrier 
frequency overlap in time at a radio receiver, we assume that neither 

is received correctly. 



of nodes within line of sight of each other. On the other hand, a 

satellite transponder in geosynchronous orbit above the earth acts 

as a radio repeater. Any number of earth stations may transmit signals 

up to the satellite at one carrier frequency (the multi-access channel). 

Any signal received by the satellite transponder is beamed back to 

earth at another frequency (the broadcast channel). This broadcasted 

signal may be received by all earth staticns covered by the trans- 

ponder beam. Thus, a satellite channel (consisting of both carrier 

frequencies) provides a completely connected network topology for 

all earth stations covered by the transponder beam (see Fig. 1-2). 

SATELLITE 

O REGIONAL OR GLOBAL 
BEAM BROADCAST AT 

MULTI-ACCESS AT    ., FREQUENCY N 
FREQUENCY ^ 

Figur« 1-2.       Packet Switch In th« Sky. 



The provision of a complete]/ connected network topology by 

a satellite or radio channel  eliminates  complex topologi^al design 

and routing nroblems  in larj'e networks   [FRAN 72B, GERL 73].    More- 

over, the use of packet switching techniques enables a large population 

of users '.o statistically average their total  ^oad at the high-speed 

multi-access  channel.     Each user also transmits  d?ta at the  (wideband) 

data rate of the channel.    Thus, both high  channel utilization and 

>iii<ill packet delays are possible through the use of appropriate packet 

switching techniques.    We shall elaborate upon the advantages of 

packet switched radio communication systems in the next chapter. 

We give here a description of the ALOHA System which is one 

of the  first packet  radio communication systems. 

The ALOHA System is an experimental terminal  access network 

at the University of Hawaii   [ABRA 70,  KUO 73].    Two 24  KBPS radio 

channels are used.    One of the two channels is used by all remote 

terminals  for transmitting data into the central  computer.     (This 

is  a multi-access  channel.)    The other channel  is used for trans- 

mitting data out  of the central  computer to the remote te^ninals. 

(This  is  a broadcast  channel.)    The transmission of data from the 

central  computer to the terminals  is relatively simple since the 

central  computer can schedule  its  own use of the broadcast  channel. 

The multi-access channel,  however,  uses  the  following radically new 

random access packet  switching technique.     (This  scheme will  be re- 

ferred to as pure ALOHA.)     Fach  termi.al  transmit     äata to the 

central  computer over the same  24   KBP5 channel   in  30 msec,   bursts 



(packets) in a completely unsynchronized manner. A transmitted 

packet can be received incorrectly as a result of two typ^s of 

errors:  (1) random noise errors, and (2) errors caused by inter- 

ference tat the  radio receiver of the central computer) with a packet 

transmitted by another terminal.  If and only if a packet is re- 

ceived with no error, it is acknowledged by the central computer. 

After transmitting a packet, a terminal waits a given amount of 

time (time-out interval) for an acknowledgment; if none is received, 

the packet is retransmitted. This process is repeated until succc sful 

transmission and acknowledgment occur or until the process is stopped 

by the terminal.  It was estimated that the ALOHA System could theo- 

retically support more than 300 active terminals [A3RA 70]. 

There is currently an immense worldwide interest in the de- 

velopment of satellite communications systems.  In addition to the 

worldwide INTELSAT system [PUEN 71], there are currently in operation 

two domestic satellite systems:  Anik in Canada [GRAY 74] and Molniya 

in the U.S.S.R.  With the advent of domestic satellite systems in the 

United States [CACC 74], various satellite computer-communication 

systems based upon the packet radio communication concept of the 

ALOHA system have been proposed [ABRA 73, CROW 73, KLEI 73A, ROBE 73]. 

In particular, Abramron suggested that a single transponder in a 

domestic satellite system could easily provide 10 MBPS for a public 

packet switched service with 100 earth stations over the U. S.; each 

earth station has an average data rate of 15 KBPS and a maximum trans- 

mission rate of 10 MBPS fABRA 73].  Dunn and Eric gave a comparison 



of illustrative costs  for sone of the above proposed packet  switched 

satellite systems  assumiiig tac  u.>e of small  earth  stations  for  100 

nodes  serving the 40  largest  metropolitan  areas   in the U,  S.   [DUNN 74] 

In a recent application to the FCC for approval of a public packet 

switched network,   a l.S MbPS satellite channel was  included in the 

proposed network configuration based on  land lines   [TELE 731, 

1.3        Packet Switching Techniques 

Consider a radio communication system such as the satellite 

system deputed in Fig.   1-2 or the ALOKA System.     In each case, 

there is a broadcast channel  for point-to-multipoint communication 

and a multi-access channel shared by a large number of users.     Each 

user is assumed to have a small  average data rate relative to the 

channel transmission rate, but each transmits packets of data at the 

channel transmission rate.     (In other words, the users have bursty 

input sources.) « 

Since the broadcast channel is used by a single transmitter, 

no transmission conflict will arise.  All nod^s covered by the radio 

broadcast ran receive on the same frequency, picking out packets 

addressed to themselves and discarding packets addressed to others. 

The problem we are faced with is how to effect time-sharing of 

the multi-access channel among all users in a fashion which produces 

an acceptable level of performance.  As soon as we introduce the 

notion of sharing in a packet switching mode, we must be prepared to 

resolve conflicts which arise when simultaneous demands are placed 

upon the channel.  There are two obvious solutions to this problem- 



the first is to form a queue of conflicting demands and serve them 

in some order; the second is to "lose" any demands which are made 

while the channel is in use. The former approach is taken in ATOM 

and in a store-and-forward network assuming that storage may be pro- 

vided economically at the point of conflict. The latter approach is 

adopted in the ALOHA System random access scheme; in this f^^tea», in 

fact, an simultaneous demands made on the radio channel are lost. 

Let us define channel thioughput rate S    to be the average 

number of correctly received packet transmissions per packet trans- 

mission time (assuming stationary conditions).  We also define 

channel capacity S    to be the maximum possible channel throughput 

rate. 

The channel capacity of a pure M.:.OHA multi-access channel was 

estimated to be ~= 18% for a fixed packet size [ABRA 70]. Under 

similar assumptions, Gaarder showed that a pure ALOHA channel with a 

fixed packet size is always superior (in terms of channel capacity) 

to one with different packed sizes [GAAR 72]. 

Since various propa^atior delay.; are involved in a geographically 

distributed radio communication system, let us define a global refer- 

ence time called channel time.  The channel time will be assumed to 

be tr.e satellite transponder time in a satellite system and to be the 

central computer time in a terminal access network. Note that if two 

or more packet transmissions overlap in timr at the radio receiver 

(of the satellite transponder or the central computer), none is re- 

ceived correctly.  This event will be referred to as a channel collision. 
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Roberts suggested that  the channel  tine nay be slotted by re- 

quiring all channel users to synchronize the  leading edge of each 

packet transnission to coincide with an imaginary channel tine slot 

boundary.    The duration of a channel time slot is equal to a packet 

transnission tine.    The resulting scheme will be referred to as 

"slotted ALOHA random access" or "slotted ALOHA."    (In Fig.  1-3, we 

show packet transmissions  and retransmissions  in a slotted ALOHA 

system consisting of four users,)    The channel capacity of a    lotted 

* 1 - 
ALOHA channel was estimated    to be    - = 36%    [ROBE 72B], e 

UKR1     I       ^1 \ 1 1 1 1 >- 

Uten 2—i—«—pt-4—i—mH—i—i—i—«—i—f 

ÜKR3-I 1 ¥-* 1—H pt-Jl *■*—H »—f- 

UIER4-HI 1       I       I 1 J^SI 1 1 1 >_|- 
Tine—1 

£|     SUCCESSFUL PACKET TRAPjaMISMON 

|^|     TRANSMISSIOM CONFLICT 

S' "^  RANDOM RETRANSMISSION DELAY 

Rgurt 1 2.      Slotttd A LOH A Random AootB. 

Several variants of the ALOHA random access technique have 

oeen proposed for ground raiio systems.    One technique is known as 

PM capture  [ROBE 72B].     In the event of a channel collision, the 

• 
A derivation of this result is given in Chapter 3. 
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strongest signal (packet transmission! may still be received cor- 

rectly by a good FM receiver.  As a result, the ALOHA random access 

channel capacity may be larger than the 36% limitation. Another 

scheme is currently being investigated for ground radio packet 

switching systems in ' hich the maximum propagation delay is small 

compared to a packet transmission time (say, less than O.i).  In 

such systems, the users may "listen before transmitting" in order 

to determine if the channel is in use by some other user; such 

systems are referred to as "carrier sense" systems.  In these sys- 

tems, a channel capacity much larger than 36% is possible [KLEI 74C]. 

Several reservation schemes based upon the slotted ALOHA 

random access technique have been proposed for satellite packet 

switching systems.  In a satellite channel, the round-trip propagation 

delay is approximately a quarter of a second and is in the order of 

many channel time slots.  In one reservation system [ROBE 73], the 

satellite channel is dynamically partitioned into a slotted ALOHA 

channel for broadcasting reservation requests and a scheduled channel 

for transmitting multi-packet blocks of data. The minimum delay in 

this system is at least twice the round-trip propagation delay (half 

a second). Thus, this sytem is preferable if a significant fraction 

of the channel input source consists of multi-packet messages and if 

the average message delay is the relevant measure of channel perform- 

ance. Two "rcservation-ALOHA" schemes have also been proposed 

[BIND "'Z, CROW 73].  These schemes may be used if there is only a 

small number of channel users fsay, in the order of the number of 
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slots in a round-trip propagation time},, and if the channel input 

source has constant as well as random components. 

1.4   Summary of Results 

KJ examined several radio communication packet switching schemes 

in the last section. Some of these schemes (FM capture, carrier sense, 

reservation-ALOHA) are variants of the slotted ALOHA random access 

concept; some others j.g., Robert's reservation system) are dependent 

upcr. the slotted ALOHA random access technique. 

The basic goal of this dissertation is to develop analytic 

models with which we can predict and optimise the stability-throughput- 

delay performp-.ce of a multi-access chmnel using the slotted ALOHA 

random access technique. The analytic models, despite their limita- 

tions (due to various mathematical assumptions), suggest a system 

design methodology and operational strategies for packet switching 

random access systems. Our emphasis is on a largs population of 

users with bursty input sources; each user has an average data rate 

which is small relative to the channel transmission rate. 

It has been realized that in a slotted ALOHA random access 

channel, channel ''saturation" may occur as a result of time fluctua- 

tions in the channel input or innerent channel instability [KLEI 73A, 

KLEI 73B, KLEI 74A, LAM 73, METC 73A, RETT 72]. However, existing 

results on the channel capacity [ABRA 73] and throughput-delay tradeoff 

[KLEI 73A] have all assumed steady-state conditions.  A channel 

control strategy derived from a steady-state analysis has been proposed 

which may prevent channel saturation [METC 73A]. 
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Considering the state of the research, only fragmented results 

are available on the performance (channel capacity, delay, dynamic be- 

havior and stability) of the slotted ALOHA random access channel. 

Little attention has been paid to the problem of dynamic channel con- 

trol.  In this assert at ion, we attempt to gi 'e a coherent theory of 

channel behavior and to develop techniques to optimize the system 

design and dynamically control the channel performance. 

^n Chapter 2, we summarize various advantages of satellite and 

radio communications over conventional wire communications. Satellite 

channel characteristics and cost trends are examined. Abstract models 

are then given for the random access ch-^nel and channel users to be 

considered in the dissertation. 

In Chapter 3, an analytic model is developed to predict the 

equilibrium throughput-delay tradeoff. The minimum throughput-delay 

performance envelope and the corresponding optimal retransmission 

delays are characterized. These results are generaliz , to a model 

* 
which includes a "large" user in the channel user population. 

In this case, significant improvements in the channel thxoughpu* delay 

performance are possible. A channel througNpi . rate equal to one may 

be achieved.  A continuum of throughput-delay performance envelope 

are presented.  Abiamson's result [ABRA 73] on channel capacity will 

also be given.  Simulation results have been obtained.which agree 

very well with analytic results.  However, the assumption of channel 

This situation arises when, for example, in a terminal access packet 
radio system, a single radio channel is used for both terminal-to- 
computer (multi-access) and computer-to-terminal (broadcast) communi- 
cations [GITM 74). 
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equilibrium may be valid only for finite time periods beyond which the 

channel  goes  into saturation. 

^n Chapter 4, the complexity of an exact mathematical analysis 

of channel dynamics  is  illustrated.    This serves to motivate our use 

öf approximations.    The channel traffic  (packet transmissions and re- 

transmissions in a channel slot)  is sho^o to be Poisson distiibuted 

in the  limit of an infinite average retransmission delay and under 

the "weak  independence assumption."    A difference equation is derived 

which gives  a deterministic approximation of the dynamic behavior of 

the channel su^ect to time varying inputs. 

In Chapter 5,   stable and unstable channels are characterized and 

a stability definition  is  given.     For stable channels,  previous 

equilibrium throughput-delay results  given  in Chapter 3 are actually 

valid and achievable over an  infinite time horizon.     For unstable chan- 

nels, the degree of instability is quantified by the definition of the 

stability measure FET.     An efficient algorithm is developed for the cal- 

culation of FET.    Unstable channels,  in general,  are characterized by a 

large population of users.    The "stability"  (i.e.,  FET)  of an unstable 

channel  may be  improved by reducing the channel  input  rate or increasing 

the average packet delay      The appropriate channel performance measure 

for unstable  channels  is the  stability-throughput-delay tradeoff.     Some 

stability-throughput-delay tradeoff curves are presented. 

Under the assumption that  channel  users have bursty input 

sources with  low data rates   (relative to the  channel  speed),  stable 

channels  are characterized by a relatively small population of users 
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and thus, a small throughput rate. To obtain a high channel throughput 

rate, dynamic channel control is necessary tc convert unstable channels 

into stable channels.  In Chapter 6, Markov decision theory is used 

to formulate three dynanic channel control procedures (ICP, RCP, IRCP). 

It is shown that optimal stationary policies exist.  Furthermore, a 

theorem is proved that the same stationary control policy will maxi- 

mize the stationary channel throughput rate and minimize the average 

packet delay simultaneously. An efficient computational algorithm 

(POLITE) is developed which utilizes Howard's policy-iteration method 

[HOWA 71] and is capable of solving for an optimal stationary policy 

in a small number of computational steps.  Numerical results indicate 

that optimal control policies are of the control limit type, but a 

rigorous mathematical proof remains an open problem. Throughput-delay 

tradeoffs given by optimal control policies are presented. These 

thioughput-delay results are very close to the optimum performance 

envelope in Chapter 3 and are achievable over an infinite time horizon 

for (originally) unstable channels. Since in a practical system the 

exact channel state is not known but must be estimated, some channel 

control-estimation (CONTEST) algorithms based upon the dynamic control 

procedures are proposed.  A heuristic control algorithm is also sug- 

gested. Simulations indicate that for a channel throughput rate up 

to 0.32, throughput-del ay results close to the optimum channel per- 

formance are achievable through application of the CONTEST algorithms. 

In Chapter 7, multi-packet messages are considered. An approxi- 

mate formula for the average message delay is derived.  Roberts* 

reservation system and two reservat ion-ALOHA schemes are surveyed. 
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Fig.   1-4    Summary of results  in this  dissertation. 
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In Chapter 8t we give some concluding remarks and suggest 

topics of future research interests. 

The above sumniary of results in this dissertation is depicted 

in Fig. 1-4. 

This research was motivated by the research and development 

activities of the ARPANET Satellite System intended to incorporate 

satellite packet communication into the existing ARPA Network [ABRA 72, 

BUTT 74]. Consequently, the use of a satellite channel is considered 

in numerical examples throughout this dissertation. A satellite 

channel is characterized by a large channel propagation delay which 

will be reflected in all our numerical results. However,, the models 

and methodology developed in this dissertation are applicable to 

ground radio systems.  In fact, before small satellite earth stations 

become a reality (economically), the assumption of a large population 

of channel users is more appropriate in a ground radio environment. 

We also note that application of the random access techniques con- 

sidered here is not limited to satellite and radio multi-access broad- 

cast channels. They can, for example, also be applied to terminal 

access networks with multi-drop lines [HAVE 72]. 

In summary, the major contributions of this research are: 

(1)   The characterization and performance evaluation of 

stable and unstable channels — for stable channels, 

techniques are developed to solve for the optimum 

throughput-delay performance envelope.  For unstable 

channels, the degree of channel instability is 
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quantified by the definition of the stability measure 

FET.  An efficient algorithm has been developed to 

calculate FET. The channel stability-throughput-delay 

performance is shown. 

(2)   Dynamic channel control procedures which prevent 

channel saturation in an unstable channel to give 

betv3r channel utilization--Markov decision models 

are developed for various dynamic control procedures. 

Optimal stationary control policies are shown to exist 

which will maximize the stationary channel throughput 

rate and minimize the average packet delay simul- 

taneously. An efficient algorithm (POLITE) based 

upon the policy-iteration method findt an optimal 

stationary policy in a small number of computational 

steps.  Control-estimation (CONTEST) algorithms are 

proposed for practical implementation of the auove 

control procedures. Truly stable channel throughput- 

delay performance close to the optimum performance 

envelope is achievable using the dynamic control 

procedures. 

In conclusion, despite model limitations as a result of various 

assumptions for mathematical convenience, we feel that the results 

and methodology presented in this dissertation are valuable and will 

lead to sound design procedures and operational strategies for packet 

communication systems using radio and satellite channels in a large 

network environment. 
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CHAPTER 2 

THE CHMKNEL MODEL 

The multi-access packet switching techniques introduced in the 

last chapter may be applied to wire commumcations as well as radio 

communications (both satellite and ground radio) [HAYE 72].  For 

example, a multi-drop line can be used in either the multi-access or 

broadcast mode; also, a loop system can be used as a multi-access 

broadcast system. However, as we mentoned before, we arc interested 

in the use of radio packet communication for large populations of 

users over wide areas. With this in mind, we discuss below some ad- 

vantages of radio communications over conventional wire communications. 

Since this research is motivated by the ongoing research and develop- 

ment of the ARPANET Satellite System [ABRA 72, BUTT 74], the use of 

a satellite channel will be assumed in all the numerical examples 

in this dissertation.  In the next section, we shall examine some 

satellite channel characteristics and coct trends.  Finally, in the 

last section, abstract models for the channel and channel users will 

be given. 

2.1   Advantages of Satellite and Radio Packet Cohununications 

Consider the use of packet communication in a computer- 

communication network environment to support large populations of 

(bursty) users over wide areas. We can identify the following ad- 

vantages of satellite and ground radio channels over conventional 

wire communications: 
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(1) Elimination of complex topological design and routing problems 

Topological design and routing problems are very complex in 

large networks [FRAN 72B, GERL 73]. Existing implementations suitable 

for a (say) SO node network may become totally inappropriate for a 

500 node network required to perform the same functions [FRAN 73]. 

On the other hand, ground radio and satellite channels used in the 

multi-access broadcast mode provide a completely connected network 

topology, since every user may access any other user covered by the 

broadcast. 

(2) Wide geographical areas 

Wire communications become expensive over long distances 

(e.g., transcontinental, transoceanic). Even on a local level, the 

comminication cost for an interactive user on an alphanumeric console 

over distances of over 100 miles may easily exceed the cost of compu- 

tation [ABRA 70]. On the other hand, satellite and radio communica- 

tions are relatively distance-independent. 

(3) Mobility of users 

Since radio is a multi-access broadcast medium, it is possible 

for users to move around freely. This consideration will soon become 

important in the development of personal terminals in future tele- 

communication systems [MART 71, ROBE 72A]. 

(4) Large population of active and inactive users 

In wire communications, the system overhead usually increases 

directly with the number of users (e.g., polling sbhemes). The 

maximum number of users is often bounded by some hardware limitation 
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(e.g., the fan-in of a communications proceisor).  In radio communi- 

cation, since each user is merely represented by an ID number, the 

number of active users is bounded only by the channel capacity and 

there is no limitation to the number of inactive (but potentially 

active) users. 

(5) Flexibility in system design 

A radio packet communication system can become operational 

with two or three users. The size of the user population can be 

increased up to the channel capacity. More users can be accommodated 

by increasing the radio channel bandwidth.  In other words, the 

communication system can be made bigger or smaller without major 

changes in the basic system design and operational schemes. 

(6) Statisticol load averaging 

In wire communications, the use of adaptive routing techniques 

[FULT 72] in a store-and-forward packet switched network, for example, 

enables communication links to be better utilized than in a circuit 

switched network. However, at any instant, there may still be unused 

channel capacity in some parts while congestion exists in other parts 

of the network. The application of packet switching techniques to a 

Single high-sp^ed satellite or radio channel permits the total demand 

of all user input sources to be statistically averaged at the channel. 

Note also that eaci: user transmits data at the (high-speed) channel 

rate. 

(7) Multi-access broadcast capability 

This capability in radio communication may be useful for certain 

multi-point to multi-point communication applications. 
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(H)   Ueliability 

The norminal bit error rate of a satellite charmel using forward 

-9 
error correction techniques is estimated to be P.  = 1 x 10   and 

better, compared to P.  = 1 x 10'  for typical terrestrial links 

[CACC 74]. 

2.2   Satellite Channel Characteristics and Cost Trends 

In addition to their multi-access broadcast capability, satellite 

channels have other characteristics which distinguish them from con- 

ventional conun inication channels and must be taken into consideration 

in any satellite communication system design. 

The satellite 

We quote the following information on the Anik satellites 

[GRAY 74]: 

"The satellites are about 6 feet in diameter and 

11 feet high.  At launch they weighed about 1250 lbs. and 

their orbiting weight is about 600 lbs. Each satellite's 

electronics system is powered normally by about 23,000 

solar cells with sufficient on-boprd battery capability to 

provide power during eclipse periods when the satellite is 

in shadow....The life expectancy of the batteries is a 

minimum of seven years.  Each sp ecraft consists of an 

electronic communications system, literally a microwave 

receiving and transmitting station in space, and on-board 

propulsion systems to inject it into its synchronous orbit 

and correct for wobble or spin." 
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Round-trip delay (RTD) 

A satellite in geosynchronous orbit is stationed approximately 

36,000 kilometers aDcve the equator.  A signal transmitted by an 

earth station to the satellite transponder (at one frequency) is 

beamed back to earth (at another frequency) and can be received by 

all 3tations covered by the transponder beam. The round-trip propa- 

gation delay (RTD) is approximately a quarter of a second.  Depending 

on a station's gec.^raphical location on earth, a difference of 15 

milliseconds exists.  Furthermore, the satellite drifts approximately 

200 miles in range during the day, which produces an additional two 

milliseconds difference in RTD.  Without loss of gererality, we shall 

assume the maximum RTD value for all stations in our work. 

Burst synchronization and channel slotting 

Despite differences in the RTD values of earth stations, tests 

performed with aj. Experimental TDMA system over INTELSAT I (Early 

Bird) during August 1966, indicate that transmission bursts from 

different stations can be synchronized at the satellite transponder 

requiring guard times less than 200 nanoseconds (GABS 68].  In our 

case of a packet switched system, the satellite transponder time was 

assumed to be the global reference timo (channel time) for all earth 

.nations. The very small guard time required for b^rst (packet trans- 

mission) synchronization demonstrates the feasibility of channel 

slotting.  Several slotting techniques have been examined hy Rettberp 

(RETT 73A). 
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Automatic acknowledgment 

To ensure data integrity in a communication channel, a very 

reliable method is the use of an error detecting block code in con- 

junction with positive acknowledgment of each message by its 

recipient.  In a satellite channel, any signal relayed by the trans- 

ponder is received by all earth stations including the sender(s). 

Channel collision (packet transmissions overlapping in time at the 

satellite) will be known to the sender as well as the addressed re- 

ceiver of a collided packet.  Thus, assuming that the satellite 

channel has a low (random noise) error rate, positive acknowledg- 

ments may not be necessary. 

Data rates and sir^ll earth stations 

An excellent introduction to the currently operational SPADE 

system (using an INTELSAT IV global-beam transponder) is available 

in [CACC 71].  We summarize here some relevant information on channel 

data rates and considerations for small earth station operation. 

The SPADE system utilizes single-cbannel-per-voice-carrier 

transmissions.  7-bit PCM encoding is used for voice with the 

encoded output at 56 K3PS (8000 samples/sec). The channel trans- 

mitted bit rate is 64 KBPS.  Since 4-phase coherent PSK modulation 

is used, the transmitted symbol rate is 32,000 symbols per second 

using a bandwidth of 38 KHz.  The SP\DE channel unit can be operated 

in continuous or voice-activated mode depending on whether data or 

voice is transmitted. 
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The SPADE system with standard INTELSAT earth stations wil, 

achieve a maximum capacity of POO voice channels (assuming voice 

activation). This capacity is simultaneously bandwidth and power 

limited. Hence, if smaller earth stations (i.e., stations with 

smaller antennas) are used, the capacity will be power limited and 

there will be a reduction in system capacity. One approach to mini- 

mize the power limited condition is to use error coding to provide 

a tradeoff of the excess available bandwidth to reduce the nst per- 

channel required power. 

Costs and other considerations 

We emphasize again that we are primarily interested in systems 

involving fairly large populations of users.  In such a packet 

switched satellite broadcast system, the cost of earth Station 

dominates the satellite bandwidth cost. A standard INTELSAT earth 

station with a 97-foot antenna costs between $3-3.5 million dollars 1 

We note that if a node has enough traffic to justify the cost of a 

large satellite station, its traffic is probably high enough and 

consequently, sufficiently "smooth" to warrant its own satellite 

channel. On the other hand, an earth station for a domestic satellite 

system (such as Anik and future U. S. systems) can use a 30-foot 

antenna which costs from $150,000 upwards.  This figure is comparable 

to the costs of peripheral devices in present large computer instal- 

lations.  In a recent study [DUNN 74], even smaller earth stations 

The above figures were quoted in an informal conversation with people 
in the General Electric Company Space Division. 
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(with antenna diameter between 10 to 15 feet) were suggested. The 

annual cost per station was estimated to be approximately $5,000 to 

$15,000. 

We also note that there is an existing regulatory restriction 

on the use of an INTELSAT IV channel in the multi-access broadcast 

mode for several stations. Discussions are under way with various 

agencies to remove these regulatory barriers in either the INTELSAT 

system or one of the domestic systems [ABRA 73]. 

With domestic satellite systems, data rates are not limited 

to that of a single voice channel. For example, data rates ranging 

up to 60 MBPS will be available over the American Satellite Corpora- 

tion system. Furthermore, specialized network configurations will be 

available to suit a user's customized requirements [CACC 74]. 

We quote the following remarks on projected satellite tech- 

nology cost trends by Roberts [ROBE 74]: 

"Although terrestrial communications cost appears 

to limit the futuie price of computer-communication ser- 

vice, including packet-switching networks, the situation 

is rapidly changing with the introduction of domestic 

satellites... .Applying the least-mean-squrre rjxponential 

fit to this data, the rate of technological improvement 

in the cost performance of satellites is found to be 40.7 

percent per year, or a factor cf ten every 6.7 years. 

This can only be treated as a crude estimate of the cost 

trend for satellite communicition, but since it is quite in 

keeping with the general cost trerd for electronics, it is a 
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quite credible growth rate....Satellites will play an impor- 

tint role in reducing the future cost of packet switching 

service " 

2.3   An Abstract Model 

Consider packet switched satellite and radio systems using 

the slotted ALOHA random access technique.  In order to evaluate the 

performance of these communication systems via model building and 

theoretical analysis or simulation, it is desirable to define abstract 

models which include only the salient properties and operational fea- 

tures. We define the following models for the multi-access broadcast 

channel and its users. 

2.3.1 The Channel 

We assume a bandwidth limiteo channel.  Since users of this 

channel are in general geographically distributed, we assume a global 

reference time called channel time (see Section 1.3).  Channel trans- 

missions are assumed to be free of random noise errors so that a 

packet of data is received incorrectly if and only if it collided 

with another packet at the channel. We assume fixed size packets. 

Channel time is slotted such that all users synchronize their packet 

transmissions into channel slots. A channel slot length is exactly 

equal to the duration of a packet transmission. Any guard time re- 

quired to separate packet transmissions in the channel is neglected. 

From now on, time will be expressed in channel slots. All  .ces will 

be normalized with respect to a channel time slot. 
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Channel Input 

The channel input in a channel time slot is a random variable 

representing the total niu^-ir of new packets transmitted by all users 

in that time slot. The channel input rate S ib ^e average n imber 

of new packet transmissions per time slot (assuming stationary 

conditions). 

Channel Traffic 

The channel traffic in a channel time slot is a random variable 

representing the total number of packet transmissions (both new and 

previously collided packets) by a1! users in that time slot. The 

channel traffic rate G is the average number of packet transmissions 

i)er time slot (assuming stationary conditions). 

Channel Throughput (Output) 

The channel throughput (or output) in a channel slot is a 

random variable representing the number (0 or 1) of successful packet 

transmissions in that time slot. The channel throughput (output) rate 

S    is the same as the probability of the channel traffic in a 

channel slot exactly equal to one (assuming stationary conditions). 

The maximum possible throughput rate of a channel is defined to be 

the channel capacity S 
 *--—*-  max 

Retransmissior. Delay (RD) 

Whenever a packet has an unsuccessful transmission, it incurs 

a retransmission delay equal to the amount of time from the packet's 

collision at the channel until its subsequent retransmission attempt. 

Each retransmission delay can be regarded as the sum of a deterministic 

29 



delay and a random delay. Random delays are needed since if packets 

which collided at the channel are retransmitted after the same deter- 

ministic delay, they will collide again for sure.  (Of course, if 

there is only a small number of channel users, each user may use a 

separate deterministic RD and no random delay is necessary.! 

For example, in a satellite system, the deterministic delay 

corresponds to a station's round-trip propagation delay (assumed to 

be the same for all earth stations). Random delays may be inserted 

independently by earth stations into the retransmission times of pre- 

viously collided packets to minimize their probability of colliding 

again. In a terminal access radio communication network such as the 

ALOHA system, the retransmission delay corresponds to a terminal's 

positive acknowledgement time-out interval. 

The retransmission delay is probaMy the most important design 

variable in the system. As we shall see, it determines the channel's 

throughput-delay performance, dynamic and stability behavior. As a 

result, it will be utilized for dynamic channel control. We shall 

assume the deterministic delay in RD to be R slots and the random 

delay to be uniforaly distributed over K slots. This will be re- 

** 
ferred to as URiforg retransmission randomization.   Hence, RD has 

the probability density function shown in Fig. 2-1. 

In a terminal access ground radio system, the round-trip propagation 
delay(corresponding to the deterministic delay) is in general a frac- 
tion of a time slot rather than equal to many slots. 
• * 
Another simple probability density function which can be utilized is 

the geometric distribution (geometric retransmission randomization).  It 
turns out, as we show in Chapter 5 via siinulatiors, that the channel 
performance is dependent primarily upon the average value of RD and 
quite insensitive to its exact distribution. 
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Packet Delay 

The total delay a packet incurs is defined to be the amouit of 

time from the packet's initial transmission until "successful trans- 

mission occurs." (Nodal processing delays will be neglected.)  Con- 

ditioning on a successful packet transmission, let R' be the delay 

from the time the sender of the packet finishes transmitting the 

packet until successful transmission occurs.  In a satellite channel, 

this amount of time is just one round-trip propagation delay (hence, 

R' « R ).  In a ground radio terminal access network, the meaning of 

R' is not so well defined; it can either be interpreted as the channel 

propagation time from the terminal to the central computer or as the 

d^lay until a positive acknowledgment is received from the central 

co'.nputer. Without loss of generality, we shall assume R^ = R 

throughout this dissertation.  We show in Fig. 2-2 the total delay of 

a packet which has exactly one collision. 
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Numerical Constants 

For purposes of numerical examples throughout this dissertation, 

we assume the following numerical constants based upon a satellite 

voice channel. A satellite channel is characterized by a very large 

channel propagation delay (compared to ground radio). These assump- 

tions will be reflected in our numerical results and conclusions drawn 

from these results. However, the methodology and analytic tools de- 

veloped in this dissertation will not be dependent upon these 

assumptions. 

unless stated otherwise, R will be taken to be 12 channel 

time slots and each time slot is 22.5> milliseconds long, giving 44.4 

slots/second. The above figures are computed from the assumptions 

* 
of a 50 KBPS satellite voice channel,  1125 bits/packet (including 

Actually, a SPADE voice channel has a transmitted bit rate of 64 KBPS 
in which case the assumption of 144C bits/packet (probably including 
error correcting codes, guard time, ctc.l will give rise to the same 
numerical constants. 
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overhead bits for address, parity check, etc.) and a round-trip pro- 

pagation delay of 0.27 second. 

Note that we have assumed a 50 KBPS channel because this happens 

to be a currently available satellite channel data rate. With the 

introduction of domestic satellite systems which will provide a wider 

range of data rates [CACC 74], a higher channel data rate may be con- 

sidered (e.g., a 1.5 MBPS channel was included in the proposed Telenet 

packet switching network [TELE 73]). On the other hand, we may want 

to use a lo*er dati  rate for a ground radio system. 

2.3.2 Channel Users 

••Users" are defined to be entities which have the capability 

(e.g., antenna, transceiver, modem, logic, buffers, etc.) to transmit 

and receive packets of information over the channel as well as to 

accept input and deliver output to its •'source." Examples of channel 

users may include a vide variety of devices such as hand-held personal 

terminals [ROBE 72A], teletype consoles, data concentrators and nodal 

switching units (see Fig. 1-1). The terminal control units of the 

ALOHA system [KUO 73] and the satellite IMPs of the ARPA network 

[BUTT 74] are some practical examples. 

in this dissertation, we shall distinguish two abstract models 

of users: small users and large users. 

Small users 

A small user is one with buffer space for exactly one packet 

awaiting transmission.  If and only if the buffer is empty, a packet 

arrival occurs with probability a .  (A packet arrival is said to 
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occur only when a new packet is ready for transmission in the current 

time slot, i.e., after it has been entered by the source and pro- 

cessed by the user.) Thus, the user "think" time (i.e., the time 

between the successful transmission of a packet and the initial trans- 

mission of the next packet) is geometrically distributed with an 

average value of — slots. A small user can be in one of two states: 

blocked (buffer occupied) or thinking (buffer empty). An example of 

a small user in a ground radio system i^ a teletype console with key- 

board lockout such that the human user cannot enter a new line of 

characters (a packet) before the previous packet is successfully 

transmitted. 

A small user or terminal as characterized by our abstract model 

may or may not be "small" in a real system.  If, instead of a 50 KBPS 

channel, we now consider a 2 MBPS channel with 20 kilobit packets 

and if the sum of the average user think time and packet delay is 

2 seconds, the "small" user has a data rate of 10 KBPS! 

Large users 

Large users will be considered in Chapter 3 only. A large 

user is defined to be one with a large buffer capacity such that new 

packets generated by the source will never be blocked due to lack of 

buffer space. Unless stated otherwise, the stream of packet arrivals 

to a large user is assumed to be a Poisson process. 

In a large user, several packets may be awaiting transmission 

at the same time. We assume that all new arrivs.ls are scheduled for 

transmission immediately. A scheduling conflict occurs when more than 

34 



one packet is scheduled to transmit in the current slot. The highest 

priority packet will transmit while the other packets are rescheduled 

independently (see below).  Any priority rule will give  rise to the 

same average packet delay (conservation law! [KlV.l  64]). The following 

priority rule will be assumed for mathematical convenience. 

Priority rule 

We list in decreasing order of priority (depending on a packet's 

most recent history) for transmitting in the current slot: 

(1) packers randomized into the current slot after a 

collision at the channel 

(2) packets randomized into the current slot after a 

scheduling conflict 

(3) new arrivals in the current slot 

Tho first-come-first-served rule is used for packets in the same 

priority group. Ties are broken by random selection. 

Rescheduling delay 

A packet which is blocked due to a scheduling conflict is re- 

scheduled in one of the next L slots, each such ?lot being chosen 

with probability T- (uniform rescheduling randomization). The average 

rescheduling delay is thus  (L *  l)/2. We note that the uniform re- 

scheduling randomization serves the same purpose as the uniform retrans 

mission randomization. Our numerical results in this dissertation will 

be obtained using the sane value for both L and K . We show below 

in Fig. 2-3 the total delay of a large user packet which has one 

channel collision and is rescheduled three times. 
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CHAPTER 3 

THROUGHPUT-DELAY PERFORMANCE 

3.1   Introduction 

In this chapter, analytic mcJels are developed to predict the 

throughput-delay performance of the slotted ALOHA channel described in 

the last chapter. A gamut of throughput-delay tradeoffs will be pre- 

sented corresponding to 

• the infinite population model in which the channel 

supports input from a large number ot" small users 

modeled as a Poisson channel input f.ource 

• the large user model in which the channel user populatio1 

consists of a large user (with buffering and scheduling 

capabilities) in addition to the population of süiall 

users above 

• the finite population niodel in which the channel user 

population consists of a small number of large users 

Small and large users may correspond to any physical devices which 

satisfy their abstract model descriptions given in Section 2.3.2.  For 

example, a small user may represent a teletype console in a ground 

ralio environment or an earth station in satellite communications as 

long as such a "small" user generates (independently) a new packet for 

transmission over the multi-access broadcast channel only after its 

previous packet has been successfully transmitted. 

We show below that the slotted ALOHA channel capacity for the ii 

finite population model is less than 37 percent. However, when a majoi 

fraction of the channel input is from a single large user which can buff 
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and schedule its cvm conflicting demands, both the channel capacity and 

throughput-delay performance can be significantly improved.    Such im- 

provements are also possible with a channel user population consisting 

of a small number of large users.    However, when the number of large 

users  is ten or more, we show that the channel throughput-delay results 

already approximate those of an infinite population model. 

Throughput-delay results in this  chapter are obtained under the 

assunption of equilibrium conditions.    Monte Carlo simulations indicate 

that often this assunption is valid only  for some finite time period 

beyond which the channel goes into "saturation."    This phenomenon will 

be characterized in Chapter 5.     The possibility of unstable channel be- 

havior was  first brought up in  a private conversation with Martin Graiiam 

(University of California,  Berkeley). 

3.2        The  Infinite Population Model 

3.2.1    Assuiqptions 

An abstract model  for the slotted ALOHA channel  is  given in Sec- 

tion 2.3.1.    We assume here that the user population consists of a very 

large nuirber of small users such that    V      ,  the channel input in the 

t      slot,  is  an in  -pendent prjccss  and has  a stationary Poisson 

distribution with  an  average of    S    packets/slot. 

Suppose    X      is  the  channel  traffic in the    t time slot.    We 

shall  assume that during the time period of interest    X 

(1) is an independent process, 

(2) is  Poisson distributed,  and 

(3) has      stationary probability distribution. 

These assumptions w^^   be  referred to as  the  independence assimption, 

the  Poisson  assumption,   and the  stationarity assur^tion,   respectively. 
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We define equilibrium solutiorfs (equilibrium points, equilibrium 

contour) to be those values of the channel input rate S and the chan- 

nel traffic ^ate G such that the condition, channel throughput rate 

equal to the channel input rate, is satisifed. In this chapter, we shall 

be concerned only with equilibrium solutions. The channel is said to be 

in equilibrium at an equilibrium point during a period of time if the 

channel traffic X  is a stationary process and the average channel 

traffic and throughput given by the stationary distribution of X  sat- 

isfy the equilibrium point. 

We show in Chapter 5, that slotted ALOHA channels supporting input 

from a large but finite nimber of small users are either "stable11 or 

"unstable." For stable channels, the equilibrium throughput-delay trade- 

offs given in this chapter are achievable over an infinite time horizon. 

On the other hand, an unstable channel will go into "saturation" after 

some finite time period. 

Both the independence and Poisson assumptions represent approxi- 

mations in our analytic model. Their accuracy will be examined by com- 

paring analytic results with results from Monte Carlo simulations. Fur- 

ther tests to examine the Poisson assumption are given in Appendix A. 

It will also be shown ir Chapter 4 that the Poisson assumption is actu- 

ally xraplied by the independence assumption when the uniform randomiza- 

tion interval K is large. 

3.2.2 The Analysis 

Let E be the average number of retransmissions a packet 

incurs.  Consider the time interval  [tQ.tj] during which 
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'-1 
^ X   ■ total nuinber of packet transmissions 

and 

t"tn 
in    [tQ.tj] 

2L 4(X ) - total number of successful packet 

tmto transmissions in [t/x.t.j 

where 

AiY) 
1   y ^ 1 

0    otherwise 

Under the independence and stationarity assumptions, the average 

number of transmissions required for a packet is 

1 Xt/(t1 - t0 * 1) 
t=t0                    G 

1 ♦ E « , lim^   -— ■ ^  

Z ^(^/(t, - tn ♦ l) 
t«t. 

For an equilibrium solution, the channel throughput rate S^^ is 

equal to the channel input rate. Thus, 

1 ♦ E - | (3.1) 

We next define q to be the probability of success given that 

a packet transmission has occurred. By similar arguments to the 

above, we have 
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The slotted ALOHA channel capacity for the infinite population 

model can be obtained by the following zeroth order approximation 

approach similar to Abramson's analysis of an uns lotted ALOHA channel 

[ABRA 70, ROBE 728]. Consider a test packet transmission in a channel 

time slot.  Its probability of success is the probability that no 

other packet is transmitted in the same channel slot. Applying the 

Poisson assumption and Eq. (3.2), we have 

q '  e"G (3.3) 

and 

S = Ge"G (3.4) 

Now if we differentiate Eq. (3.4) with respect to G , it can easily 

be shown that the maximum channel throughput rate (channel capacity) 

is 

S   « - = 0.368 
max  e 

The zeroth order approximation above disregards both the time 

history of the test packet and the uniform randomization interval K 

for retransmissions.  In order to compute the average packet delay 

D , we shall taHe the following approach (to be leferred to as the 

first order approximation). 

Given a test packet, two states are distinguished depending 

upon its immediate history: new or previously collided. We then define 
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Hence, 

a    ■ Prob[success/transmission of a ^ew test packet] 

q    ■ Prob[success/transmission of a previously 

collided test packet] 

Prob[a packet is retransmitted exactly   i    time? 

before success] 

■  d - %)(l " V1"1 qt i ^ 1 

and 

uu 

i-1 
E^zui-vd-V     "t 

1     - 
^ 

(3.5) 

^rr 1  + E      qt * 1  - q.rt 
(3.6) 

\*-^k    ÄLÖTS—Jfcj-» R     SLOTS —^j 
CHANNEL TIME 

CD  JACKET TRANSMISSION 
ÖatLlStON 

CURRENT 
TIME SLOT 

Fifurt 3-1.      ChAnnd Traffic Into • Tirm Sot. 
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We now condition on a test packet transmission in the current 

tine slot. This transmission may be unsuccessful due to interference 

by new or previously collided packets transmitting also in the 

current slot (see Fig. 3-1). Suppose the test packet had a previous 

collision in one of the K slots (say the j ) indicated in the 

figure. We define q  to be the conditional probability that no 

th 
packet from the j  slot other than the test packet retransmits into 

the current slot. Using the Poisson assumption for channel traffic in 

each of the K slots. 

<L 
I 

1 - e 
-G 

Y/K_-l\n Gn -G 
n-1 

e K - e-G 

1 - e 
-G 

Let q  be the probability that no packet which collided in one of 

the (K - 1) slots (other than the j  slot) retransmits in the 

current slot.  We have 

00 

„ - Y /* - * f Gn -G  _ -G   -G 
na2 

K  G -G 
e  ^e 
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Invoking the independencp assumption, we then obtain 

K-l -S 

"K   -G 
e  - e 

1 - e 
-G 

lK-1 

K  (. -G 
e  ♦ r* * 

-s 
(3.7) 

Now suppose the test packet is a new packet.  By similar arguments 

to the above, we can express its probability of success as 

G 
"K G  -G 

♦ T7 e 
-S 

(3.8) 

From Eqs. (3.2) and (3.6), we then have 

= G 
qt * 1 - qn 

(3.9) 

The average delay D incurred by a packet at the channel 

includes the channel propagation time, the packet transmission time 

and retransmission delays and is given below (in number of time 

slots) by 

D = R * 1 * E (R + ^-J-i) (3.10) 

where R ■•■ (K + l)/2 is equal to the average retransmission delay 

(see Fig. 2-1), 
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Equations (S.yj-CS.O) form a set of nonlinear implicit equations 

which must be solved numerically for the equilibrium relationships be- 

tween S and G . The average packet delay can then be obtained 

from Eqs. (3.5) and (3.10). Numerical solutions will be given in 

the next section. Below we examine some limiting cases in which ex- 

plicit solutions are available and consider their implications 

Limiting results as K -»• " 

It can easily be shown from Eqs. (3.7)-(3.9) that in the limit 

as K -► « , 

lim S  lim     lim      -G (%  IT* 

These limiting results are consistent witi» the Poisson assumption 

we made.  In fact, in the next chapter we show, given only the in- 

dependence assumption, that in the limit as K -► • , the channel 

traffic in a time slot must be Poisson distributed. 

Observe that Eqs. (3.11) are the same as the zeroth order 

approximation results. Thus, the first order approximation reduces 

to the zeroth order approximativ '*  '^e limit as K-► o0 (which 

corresponds to infinite average pacKet delay!). 

Limiting results as S -► 0 

In the limit as the channel input rate S decreases to zero, 

Eqs. (3.7)-(3.10) reduce to 

lim S  lim „ _ , ,-r i-M 

S^O G = SiO ^ - l (3-12) 

lim      K - 1 
S^O qt '  K (3.13) 
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and 

Jiff D » R ♦ 1 (3.14) 

Define K   to be the value of K minimizing the average 

packet delay   D for a fixed channel input (throughput) rate S . 

Proposition 3,1 In the limit as S i 0 , D is convex in K 

and K   is given by the largest integer K such that 

K2 - 3K - 2R ^ 0 (3.15) 

Proof With K « 1 , any channel collision will propagate 

indefinitely. Thus, K « 1 cannot be optimal. We shall consider 

K Jt 2 . For an arbitrarily small S , Eqs. (3.7) and (3.8) become 

q. - JL^-L (1 - S) 

(^ - (1 - S) 

and from Eqs. (3.5) and (3.10), 

E . 
1 'A r      S     z   _S_ 

q:  B ^r1 (i - s)   IL^i 

D = R ♦ 1 ♦^ S S  fn  ,  K - n 
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Since    S > 0  , D    is ndnimlzed by minimizing the function 

f(K)  -    j—j (R ♦ 1) + j 

Consider 

tW  - f(K -  1) - - -^ .%^l $    *i K > 2 

2 
which is less than or equal to zero if K - 3K - 2R ^ 0 . Now 

consider 
[f(K + 2) - f (K ♦ I)] - [f(K * 1) - f (K)) 

(K + 1) K(K - 1)  U h      * 

which implies that f(K) is convex in K . 

From the above results, D is convex in K and minimized 

2 
by the largest integer K such that K - 3K - 2R ^ 0 . 

Q.E.D. 

For R = 12 , lim K   = 6 which, as we show below, 

represents a lower bound on the optimum value of K for any channel 

input rate S . 

3.2.2 Throughput-Delay Results 

Numerical results 

Equations (3.7)-(3.9) were solved numerically and the results 

plotted in Figs. 3-2 and 3-3.  In Fig. 3-2, whe show the probability 

of success, q , as a function of K at a different channel traffic 

rates. For a fixed G , q increases with K and raoidly approaches 

its limiting value of e'  as predicted by Eq. (3.11).  q also 

increases as G decreases for a fixed K . 
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In Fig. 3-3, the channel throughput rate (same as the channel 

input rate S in an equilibrium solutior.) is shown as a function of 

G for fixed values of K . For a fixed G , the channel throughput 

rate increases rapidly to its limiting value of Ge   as K increases 

to infinity.  (Note that for K = 15 it is almost there.) The maximum 

channel throughput rate occurs at G = 1 for each K and the channel 

capacity S   = e"  in the K -► « limit. 

The average packet delay D is computed using Eq. (3.10) 

(and assuming R = 12 ).  In Fig. 3-3, we plotted the loci of several 

constant delay values in the S,G plane. Note the ay these loci 

bend over sharply defining a maximum channel throughput rate for a 

fixed value of D ; observe the cost in channel throughput if we 

wane to liirt the average packet dei?iy. TMs effect is clearly seen 

in Fig. 3-4, which is the fundamental display of the throughput-delay 

tradeoff for the infinite population model. This figure shows the 

throughput-delay equilibrium contours for fixed values of K . The 

minimum envelope of these contours defines a tight lower bound on 

throughput-delay performance for this system and thus, represents 

the optimum channel Performance for the infinite population model. 

Considering this optimum curve, we note how sharply the average packet 

delay increases near the maximum channel throughput rate S   = 0.368; 
max 

it is clear that an extreme price in delay must be paid here for an 

infinitesimal incremental gain in throughput.  Also shown in this 

figure are the constant G contour^. Thus, Figs. 3-3 and 3-4 are two 

alternate displays of the relationship among the four critical system 

variables S, G, D and K under equilibrium conditions. 
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In Fig. 3-">, the average packet delay is plotted as a function 

of K for constant values of S .  For a fixed S , the curve is 

quite flat near K ^ . Thus, P K value much bigger than K    can 
opt ^        opt 

be used without increasing P appreciably.  A large K is preferable 

since it increases the maximum chann- 1 throughput rate and improves 

channel stability (as we shall see in Chapter 5).  In Fiy. 3-6, we 

show K . as a function rf S .  Note that K    is a nondecreasing 
opt opt s 

function in S and is bounded below by 6 as S I 0 , which is pre- 

dicted by Eq. (3.15) for R = 12 . 

opt 

25 

20 

15 

10 

.1 .2 .3 

THROUGHPUT (PACKETS/SLOT) 
.4    S 

Figure 3-6. K_ Versus S. opt 
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Simulations 

A simulation program was developed to test thi .ccuracy of 

the approximations introduced by assumptions in the above analysis. 

In the simulation prograiri, new packets are generated from a Poisson 

distribution at a constant rate S which, together v»ith the uniform 

randomization interval K , constitute the simulation input parameters. 

Packet delays are obtained by time-stamping each packet at the time 

of its creation. The exact delay a packet incurs can then be computed 

when it is successfu'1/ transmitted.  Both long-term statistics for the 

duration of the simu -tion run and short-term statistics for consecutive 

time intervals (of, say, 400 slots each) are available. Short-term sta- 

tistic^ serve to protray approximately the dynamic channel behavior. 

Recall that the analytic results we have obtained so far are 

all based upon the assumption that the channel is in equilibrium. 

Referring to Fig. 3-4, we see that given S and K , there are two 

possible equilibrium solutions for D corresponding to a small delay 

value (say D. ) and a much larger delay value (say 0 ). We shall 

refer to the equilibrium point given by S, K and D  as the 

channel operating point, since this is the desired channel performance 

given S and K . 

Each simulation run was observed to behave in the following 

r~^ner.  Starting from an initially empty system, the channel stays 

in equilibrium at the channel operating point for a finite period of 

time until stochastic fluctuations give rise to some high traffic 

rate which reduces the channel throughput rate which in turn further 

increases the channel traffic rate.  As this vicious cycle continues, 

S4 
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the channel becomeb "flooded" with collisions and retransmissions. 

The channel throughput rate vanishes rapidly to zero. This phenomenon 

will be referred to as channel satr-ation.  (For the equilibrium 

point corresponding to Dg , no channel equilibrium for any length of 

time has been observed.) Thus, simulations indicate that we can 

assume channel equilibrium at the channel operating point, but only 

for some finite time periof,.. Such time period is a random quantity 

and will be charactexited in Chapter 5 as a measure of channel 

stability. The expected value of this random time period increases 

as K increases or S decreases. For a sufficiently small value of 

S or large value of K , the assumption of channel equilibrium was 

always valid for the simulation duration we considered.  In Fig. 3-7, 

we show a simulation run for S = 0.35 and K = 15 , which give rise 

to a relatively short duration of channel equilibrium. As we see 

in the figure, after 3000 time slots, the channel traffic rate in- 

creases very rapidly as the channel throughput rate decreases to zero. 

In Fig. 3-5, simulation points are indicated. We show only 

those simulation runs in which the channel stays in equilibrium for 

the duration of the run (assumed to be 8000 slots). The (heuristic) 

criterion we used for channel equilibrium is that the average channel 

traffic in each of the short-term statistics intervals (400 slots 

each) must be less than one.  Observe that the largest channel input 

rate used for these simulations is 0.3.  For a laiger input rate, 

our criterion of channel equilibrium is often not satisfied unless 

a very large K  (say,  Ä = 60 ) is used, which gives rise to a 
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largo average delay.  Note that the simulation and analytic results 

agree very well, thus lending validity to approximations in our analysis 

(the independence assumption and the Poisson assumption for the channel 

traffic X ).  Further simulation results on the Poisson approximation 

de examined in Appendix A. 

3.3   The Large User Model 

3.3.1 The Large User Effect 

The 1/e limitation on the capacity of a slotted ALOHA channel 

supporting input from a large number of small users (i.e., the infinite 

population model above) is due to the loss of all packets whenever 

simultaneous transmissions are made by two or more users. On the 

other hand, when the  channel is dedicated to a single large user with 

buffering and scheduling capabilities, simultaneous demands from the 

large user's input sources can be queued up and served according to 

some priority rule.  In this case, a channel throughput rate arbi- 

trarily close to unity can be achieved at the expense of a very large 

average packet delay.  Ir fact, the absolute optimum throughput-delay 

tradeoff performance of the communication channel can be obtained by 

modeling it as a single server queue.  Intermediate throughput-delay 

tradeoff perfornrnices are possible which lie between the two extremes 

of the infinite population model and the single server queueing model. 

A continuum of such intermediate tradeoff performances will be given 

below f^*" ♦'he large user model in which the random access channel is 

shared by a large user and the small users of an infinite user 

We are only interested in the average packet delay whidi is independ- 
ent of the exact priority rule as a result of the conservation law 
[KLE1 64]. 
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population. Further intermediate tradeoff performances will be given 

in Section 3.4 below for a finite number of large users.  In Fig. 3-8, 

we show a picture of the large user model in a possible satellite 

communications system. The large user model also represents a terminal 

access network in which a single radio channel is used for both terminal- 

to-computer and computer-to-terminal communications. 

SATELLITE 

SMALL USER 

Figure 3-8.      The Large User Model. 

3.3.2 Throughput-Delay Results 

We consider a channel user population consisting of a single 

large user with buffering and scheduling capabilities as described 

in Section 2.3.2, and a population of small users as in the infinite 

population model.  Hence, we distinguish corresponding to the large 

user and the smaller users two channel input sources, both of which 

are assumed to be independent processes witn stationary Foisson 

distributions.   The  (combined)  input source to the small users 

r.8 



is at a rate of S  packets/slot. The input source to the large 

user is at a rate of S2 packets/slot. The channel input rate is 

then given by 

s-sx*s2 

The channel traffic in a time slot consists of packet trans- 

missions by both the small users and large user. The large user re- 

solves any conflict among its own packets competing i.ror transmission 

in a time slot. The highest priority packet is transmitted and the 

rest of the competing packets are rescheduled for a later time. We 

define station traffic to be a random variable representing the 

number of packets in a time slot vying for transmission (i.e., for 

the transmitter) at the large user. The average station traffic is 

defined to be G  packets/slot. Uniform randomizption is assumed 

for both retransmitting packets which had a channel collision and 

rescheduling packets at the large user. Both station traffic and 

the portion of channel traffic due to the small users are assumed to 

be independent processes, Poisson distributed and have stationary 

distributions (within the time period of interest).  As in the infinite 

population model, these assumptions represent approximations in our 

analytic model and will be examined by simulations. 

We let G be the channel traffic rate such that 

G = Grf G2 

where G  is the traffic rate due to the small users and G2 is the 

traffic rate due to the large user. Since we assume that the large 
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user attempts no transmission in a time slot if no packet is scheduled 

for then (although there may be packets scheduled for a later time) 

and always transmits if one or more packets are scheduled for the 

time slot, G?    can be interpreted as the probability that station 

traffic is greater than or equal to one. We must have 0 s G2 < 1 . 

We shall solve for equilibrim solutions such that the throughput 

rates for the small users and the large user are equal to their re- 

spective input rates S  and S . The analysis is similar to the 

firc  order approximation analysis for the infinite population model 

such that the effects of the uniform randomization intervals K and 

L are included in our model.  The analytic results are summarized 

below. Details of the analysis are presented in Appendix B. 

Similar to Eq. (3.9), equilibrium channel input rates and 

traffic rates are related by the following equations: 

qit 
S, = G,  ^  (3.16) 
1 1 ^It + 1 " «in 

and 

q2t 
S. = G.  ~  (3.17) 
2 2 q2t + 1 - q2n 

whe*'e q.  and q.   (i = 1, 2)  are the probability of success for 

the transmission of a new packet or a previously collided packet 

respectively. Note that variables indexed by 1 refer to the small 

users and variables indexed by 2 refer to the large user. The complete 

set of nonlinear implicit equations involving S., G., q.   and q. 

are derived and presented in Appendix B.  These equations have been 

solved numerically and the results are given below. 
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by 

The average packet delay for the two classes of users are given 

D = R * 1 * E, |R ♦ ^4-M (3.18) 
'1 "II"    2 

D2 = R * 1 * E2 ( R ^ —-i | > (En ^ E2Et) ^-i   (3.19) 

where E.  and E^ are the average nurnb^'* of retransmissions per 

packet for tne small users and large user respectively; E  and E 

are the number of reschedules per packet transmission at the large 

user conditioning on a new packet and a previously collided packet 

respectively. Recall that the average retransmission delay is 

R + —r— and the average reschedule delay Is —r— . 

Limiting results 

In the limit as K, L + «> , H is shown in Appendix B that our 

first order approximation results reduce to explicit solutions which 

could have been derived by uirect arguments using the zeroth order 

approximation approach.  (These results correspond to infinite average 

packet delay.) We have in the limit as K, L ->• o0 , 

-G, 

^in = ^lt = e 1 (1 " G2) 
(3.20) 

S, = G, e 1 (1 - G0) (3.21) 
11 

'S 
^2n = ^t = e 

(3.22) 
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-Gl S2 = G2 e 
1 (3.23) 

-G 
G2 = 1 - e S (3.24) 

The limiting channel throughput rate is then 

-Gl S = (G - G^) e 1 (3.25) 

where we recall S = S + S  and G = G + G2 , From the last 

equation, it can easily be shown that given either S-  or S^ j S 

is maximized if the condition 

G = G- ♦ G2 » 1 

is satisfied. This proof was first given by L. Roberts in an unpub- 

lished note and was later generalized by Abramson [ABRA 73] to various 

other chrjinel user populations. AbramsonVs result will be discussed 

in the next section. 

In Fig. 3-9, we show a qualitative diagram of the 3-dimensional 

surface for S as a function of G  and G2  ffor the limiting case 

K, L approaching infinity).  Consider the following equations: 

% • e"Gl " - V 

Ig- . -e 1 (G - G^ -  1 + C2) 
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Figure 3-9.      Throughput Surface. 

1.0   - 

G1 + G2 = 1 

0       .1       .2       .3      .4      .5      .6 

M 

Figure 3 10      Allowable Throughput Rates for the 
Large User Model. 
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We see that for constant G < 1 » S increases linwarly with G2 . 

For constant G > 1 , S decreases linearly as G- increases. 

In addition, for constant G2 < T » s ^^ a nieocimum value at 

G = (1 - 2G2)/(1 - G2) , and for constant G2 > ^ , S decreas. 

as G1 increases and the maximum throughput occurs at S = G2 in 

the Gj = 0 plane. 

Nurerical results 

The maximum throughput contour given by letting G = G + G2 = 1 

is shown in Fig. 3-10 along with throughput contours at constant G . 

We note in these last two figures that a channel throughput rate eonal 

to 1 is achievable whenever G  (and hence, the throughput rate L 

of the small users) drops to zero, in which case S = S« = G = 1 ; 

this then corresponds to the use of a dedicated channel. 

We next present numerical results on throughput-delay tradeoffs 

for the finite K case; in all of these computations, we let L = K , 

thereby eliminating one parameter.  In Fig. 3-11, we show the tradeoff 

between channel throughput rate and average packet delay for S = 0.1 , 

where the average packet delay D is  defined to be  (5,0 * S2D2)/S . 

We show in this figure the equilibrium contours of D at constant 

values of K . The optimum performance envelope is given. Also 

shown are optimum performance envelopes for D.  and D . We see 

that if we are willing to reduce the throughput of the small users 

from its maximum of S = 0,368 to S = 0.1 , then we ca^ drive 

the total throughput up to approximately S = 0.52 by introducing 

additional traffic from the large user.  Note that the D envelope 
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is much higher than the I),, envelope.  Thus, our net gain in channel 

throughput is also a"1" the expense of long delays for the small users. 

Once again, we note the sharp rise in average packet delay when S 

approaches the channel capacity. 

In Fig. 3-12, we display a family of optimum throughput-delay 

performance envelopes for the large user model at fixed values of 

S  bounded by the optimum performance envelope of an infinite 

population model and that of a dedicated channel (modeled as a M/D/l 

aueue [KLEI74D]).  Note that as we reduce the background traffic, 

the system capacity increases slowly; however, when S  falls below 

0 i, we begin to picK up significant gains.  Also observe that each 

curve "peels off" fiom the intmite population model envelope at a 

value of S - S . The M/D/l queue performance curve represents the 

absolute optimum performance contour for any method of using the 

channel when the channel input is Poisson; for input sources charac- 

terized by other probability distributions, we may use the G/D/l 

queueing results to compute this absolute optimum nerfjrmance contour. 

Simulations 

A simulation program w^i developed for the large user model. 

As in the infinite population model simulations, we found that the 

assumption of cnannel equilibrium is valid for the duretion of a 

simulation run if a sufficiently :^all value of S or large value of 

K  (and L ) is used.  Simulation points are indicated in Figs. 3-il 

ana 3-12 fur those simulation runs which satisfied our channel equi- 

librium criterion ("described earlier).  The duration of each run was 

S000 slots.  Note that the analytic and simulation results agree very 
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well, thus justifying our analytic approximations.  TV channel 

input rates used in the simulations are much below the channel capacity; 

larger input rates can be used only with a very large K resrlting 

in average delays much above the optimum performance envelopes. 

3.4   The Finite Population Model 

So far, we have considered the slotted ALOHA channel with a 

user population consisting of many small users modeled by a Poisson 

channel input. We have seen that by adding a large user with buffering 

and scheduling capabilities, the channel performance can be markedly 

improved if a significant portion of the channe] input is due to th* 

large user.  In a real system, the iv'      ot this large user may 

change as time progresses. Moreover v    annel user population may 

include more than one large user.  In this case, the first order 

approximation approach can still be applied to solve for the throughput- 

delav results. However, the large number of nonlinear implicit equa- 

tions that must be solved numerically renders this approach computa- 

tionally 'inattractive.  In this section, the much simpler zeroth order 

approximation approach is adopted and some general results are pre- 

sented on the channel capacity of the finite population model. 

Throughput-delay tradeoffs will then be examined by simulations. 

3.4.1 Channel Capacity 

0 results in thi^ section were first obtained by Abramson 

[ABRA 73]. 

Given M large users with channel input rates S , S0, ..., S^ 

and traffic rates G. , G9, ..., G., .  Note that G. corresponds to 

the probability of the i   user transmitting in a time slot (i.e., 
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the probability of having one or more packets scheduled for trans- 

mission in that time slot as discussed previously in the large user 

model).  The equilibrium values of S.  and G.  are related by 

S. 
i so (i - 

j-lj)«i 
V i = 1, 2, ..., M (3.26) 

For any set of M acceptable traffic rates G , C , ..., GM - these 

M equations define a set of input (throughput) rates S., S^, ..., S^ 

corresponding to a region in the M-dimensional space whose coordinates 

are the S. .  In order to find the boundary of this region, we cal- 

culate the Jacobian, 

V S2' •••' SM 
Gv  G2, ..., GM 

Since 

3S, 

n (i Gi) 
i=l 

-G. 
J n (1 - G.) 

j = k 

i ¥ y- 

"                                                                                                         th          DS. 
This is the determinant of a M x M matrix whose jk  element is  i^ 

3Gk 

6'.» 



the Jacobian can be written as 

'V V ■ 
G, ,   G.,,   . 

- SM\ 

S ' 
M-2 

(1   - Gj) 

-G. 

-G, 

-G, 

(1  -  G2) 

-G, 

-G, 

-G. 

(1   -  G3) 

= aM-2   (1  -  ^   -  G2  -   ...   - GM) (3.27) 

where    a = ]   1 (1  "  G3)   ' 
j = l 

Equating the Jacobian to zero,       the boundary of the 

M-dimensional  region of allowable input rates  is defined by the 

condition 

M 

i 
i=l 

IM 

=   1 (3.28) 

Examples 

Consider two groups of users with M  users in group 1 and NU 
si       Gi 

users in group 2 and let M = M + M .  Suppose rr- and rr- arc the 
1  S. 1 G, 

input  ?jid traffic  rates  of each user in group  1,   and    r—-    and    —^    arc 
i 2 

See Section  3.2 of  [BEVE  70]. 
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the input and traffic rates of each user in group 2. In this case, 

the M equations inEqs. (3.26) become the two equations 

■■^{'■kY (-1) 
(3.29) 

^^ L   Gi\Ml 
S2-G2Vl-^j   I1 -FT 

which map the region of acceptable traffic rates in the (G., G2) 

plane into the region of allow«iole input rates in the (S-, $21 

plane, the boundary of which is defined by the condition 

Gj 4 G2 « 1 (3.30) 

Substituting Eq. (3.30) into Eqs. (3.29), the resulting equation can 

be solved numerically for the maximum throughput contour (i.e., 

boundary of the allowable region of input rates) in the (S,, S2) 

plane.  Several examples of such maxinpun throughput contours are 

shown in Fig. 3-13. Note that the special cases  (M , NL) « (», 1) 

and (« , •) correspond to the large user model and the infinite 

population model respectively. 

3.4.2 Simulation Results 

A simulation program was developed for the finite population 

model. As in previous simulations for the infinite population model 

and the large user model, the assumption of channei equilibrium is 

valid for the duration of a simulation nm if sufficiently, small 
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values of S.  or large values of K (and L )  are used. We show 

in Fig. 3-14 throughput-delay tradeoff performances for the finite 

population model consisting of 2, 3, 5 and 10 large users; in each 

case, the channel input rate is assumed to be equally divided among 

the users. The infinite population model optimum envelope is also 

shown for comparison. Note that when the channel user population has 

10 large users, the large user effect disappears and I . throughput- 

delay results already approximate closely those of an infinite user 

population. 
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CHAPTER 4 

CHANNEL DYNAMICS 

In the last chapter, analytic models were developed to predict 

the equilibrium throughput-delay performance of the slotted ALOHA 

channel under various assumptions. Many of these assumptions (e.g., 

the independence assumption, the Poisson assumption and the station- 

arity assumption) represent merely approximations to the physical 

situation. However, without them the mathematical analysis becomes 

very complex and solutions are difficult to come by. The source of 

difficulty lies in the dimensionality of the state vector.  (The 

state vector of a system consists of all the variables of interest 

such that knowledge of them at time t.  and knowledge of all system 

inputs in the interval  [t1,t9]  are sufficient to determine uniquely 

the state vector at time t^ > t  .)  For the channel model under con- 

siderat on, we must include in the state vector, channel information 

for as many time slots as the maximuL v Jue of a retransmission delay. 

Furthermore, each component of the state vector nay take on a large 

number (possibly infinite) of values. 

In this chapter, we first formulate a Markov chain model with 

none of the assumptions mentioned above and obtain a recursive trans- 

form equation which characterizes the time behavior of the channel. 

However, no simple solution to the transform equation has been obtained. 

Sud. an exercise in symbol manipulations serves only to illustrate the 

difficulty and futility of an exact mathematical analysis. Next, we 

adopt a weakened version of the indepe idence assumption for channel 

traffic and show, for the infinite population model, that as the uniform 
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rar-joir' iati "^  -^erval  K approaches infinity, the channel traffic 

is ^oisson distributed.  At the same time, the average channel craffic 

as 1  ^unction of time is given by a difference equation. This equa- 

tion permits us to investigate the dynamic behavior of the channel 

subject to a time varying input. Since only expected values are in- 

volved, the difference equation represents a deterministic approxi- 

mation or fluid approximation [KLEI 74D, NEWT: 68] of the original 

stochastic process. Similar dynamic channel behavior was predicted 

by Rettberg [RETT 72]. 

4.1   An Exact Analysis 

We shall analyze the slotted ALOHA channel described in Section 

2.3 without most of the assumptions made in the last chapter. As 

t      t 
before, V  and X  are random variables representing the channel 

input -^jid channel traffic in the t   time slot.  The only assump- 

tion we S
N
H11 need in this section is that V  is an independent 

process and independent of the channel state. The channel state vec- 

tor at time t  is given by the set o ' R + K variables 

t   t-1       t-R-K+1 
{X , X  , ... X '  v } .  (Note that R + K is the maximum value 

of a retransmission delay.)  We define the channel state vector 

Xt = 

XR+K 

,t-l 

,t-R-K+l 

which is a random vector with probability distribution 
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Pt(x)  = Prob   [l1 = x] x e S 

where S is the admissible state space and x is an integer-valued 

(R + K)-dimensional vector in    S .    X      is  a discrete state discrete 

time Markov chain which will be completely specified by its one-step 

state transition probabilities 

P^lx) = Prob[Xt+1 = xJV* = x] x,L e S 

such that 

pt+1(Z) -  Z   P^zliOP^x) 
xeS 

ieS (4.1) 

We new define. 

v.1 - Prob[Vt -  i] i » 0,  1, 2, 

and 

X(m)  =     l 

0        m =  1 

m        m ? I 

The one-step state  transition probabixities at time t for the Markov 

chain X    are given below. 

0 

P^llx)  =       < 

ist 

-1 

if y.  / x.   , J i        i-l 

V i =  2,  3,   ,..,  R+K 

otheivise 

(4.2) 

whe re 
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is the total number of packets which collided in the K slots (from the 

(t - R)th to the (t - R - K + I)1 )    such as shown in Fig. 3.1. Note 

that each such packet retransmits into the (t + 1) w slot independently 

with probability •» . Note also that for 1 = 2, 3, ..., R + K , the 

event  [y. ^ x.  J  is impossible and thus has zero probability (since 

both y.  and x.   represent the value of channel traffic in the 

same time slot). 

Now givv« £ji initial probability distribution for the channel 

traffic in R    consecutive time slots, the stochastic behavior of 

the channel as a function of time is predicted by Eqs. (4.1) and (4.2). 

A recursive transform equation 

We first define the following transforms, 

Az)   =   I   z1 v.1 

i=0 

and 

JM = Q'UJ. Z2 zR+K) 

■ I - 1 . 
xr0      XR.K=O\ J=1 

fb Pt(x) 

From Eqs.   (4.1)   and  (4.2),   a  recursive transform equation  relating 

Q       (z)     to    V       (z)     and    Q   (z'j     can he derived   (sec Appendix (".)   and   i: 
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given below. 

Qt+1(z) -V1*1^) 7 Qt(z;£) 
{(e^.-.^^le^O,!) 

(4.3) 

where £ is a K-dimenGional vector and Q U;£)   for a given £ can be 

.t,. 
obtained from Q^OO by the following algorithm: 

(1)  Initialize Q iz;e) + Q (z2,... ,zR+1 ^^ . . ,yK) and j ^ 1 

(2)  If j = K, go to (5) 

(3)  If e. = 0, 

replace y. by zR+. + 1 (1 - i . ^) in Q^z^), 

else QL(_z;e)  *■  zD   . 
U-Z0   .     3    „t 

R+j+1      K y4 = 0 

(4)     j +• j  +  1  and go to  (2) 

(5)     If eK = 0, 

replace y    by 

else Qt(z;e) 

( 1 " K + TT ) in Qt (-;- ' 

l-z 
Qt(z,e) K 8yl yK - o 

ITie notation A+• F(A) means: evaluate F(A) which then becomes 

the new expression for A. As an example, for the case when R = 2 and 

K =  2,    we  get  tnc   following transform equation. 
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Qttl(z1.z2.z3.z4) 
t* 1 

V1  (Zj) 

V1-! 

^(^3-4 (-^^). (-14)) 

-T1, ä^^l'z'^'^l1 -ir-T)- y2) 

+ —^ W^7:q  fz2'Z3'yl-V2) 

y^o 

y2 = o 

yi'y2 " 0 

The above equation demonstrates the complexity of the transform equa- 

tion even for small values of R and K   \o solution to Eq. (4.3) 

has been found.  The above analysis serves to illustrate the difficulty 

and futility of an exact mathematical anal>sis and motivates our use 

of approximations. 

4. 2   An Approximate Solution 

In this section, we shall analyze the same model above with 

an additional assumption. We shall assume that the channel traffic 

within any K consecutive time slot., are independent of each other 

so that it suffices to solve for the probabilities. 

P.1 = Prob[Xt - i] 1=0, 1, 2, ... 

and the transform. 

Q^z) = 1  zV* 
L=0 

This is a weakened version of the independence assumption for channel 
traffic used in Chapter 3 and will be referred to as the weak indopen- 
dencc assumption for channel traffic.  Recall that the (strong) 
independence assumption gave very accurate results as verified ^y 
simulations in Chapter 5. 
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instead cf    Q  (2)   .     We define the expected values of the random 

variables    X      and    V      as 

Gt  =  FfX1] 

and 

S*  =  EIV1] 

Another tiar^form equation 

A transform equation similar to Eq.   (4.3)  can be derived under 

the weak  independence assumption   (see Appendix C)   and is given below. 

K 

(4.4) 
Q^Z) = V^z) n ^ i-WHi^ ¥ 

Eq. (4.4) can be solved recursively for Q (z)  given initial proba 

bility distributions of the channel traffic in R + K consecutive 

time slots.  Alternatively, Q (z)  cm be approximated arbitrarily 

well by solving for P.  and a finite number of the Moments of fhe 

channel traffic  < .  (Note that P   represents th expected channel 

th 
throughput in the t  time slot.)  By differentiating Eq. (4,4) with 

respect to z  and setting z  equal to zero, we obtained the fol- 

lowing difference equation for G  under our assumptions. 

K 
,t-R-j - P 

t-R-j 
+ S (4.5) 
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Theorem 4.1  If the channel input is an independent Foisson 

process, then the channel traffic is i'oisson distributed in the limit 

as K ->■ ^ under the weak independence assumption, such that 

and 

where 

Q^z) -e-^1^ (4.6) 

Pj1 = GVG M.7) 

G^i J (^"^ -G^^ e^"'^ ) .S* (4.8) 

Proof See Appendix C. 

Equation (4.8) characterizes (approximately) the time behavior 

of the channel traffic subject to a time varying input when K is 

large.  However, since only expected values are considered, this equa- 

tion represents a fluid approximation of the stochastic process X 

To incorporate statistical effects into the time behavior of the system, 

other techniques which account for some of the higher moments of X 

such as diffusion approximation [KLE1 740, NEWE 68] may be employed. 

Channel saturation described ii the last chapter may arise as 

a result of either fa) statistical fluctuaions, or (b) time variations 

in the chanicl input.  The effect of statistical Quotations will be 

studied in the next chapter.  The effect of time varying inputs Is 

examined below using Eq. (4.8^. 
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4.3   Some Fluid approximation Results 

Given the Poisson channel input rate as a function of time, 

the expected channel traffic as a function of time can be obtainsd 

from the fluid approximation given by Eq. (4.8).  In Figs. 4-1 and 

4-2, we show the channel response to two input pulses.  In both cases 

the channel input rate is initially equal to (KS packet/slot with the 

channel in equilibrium. The input rate is then increased to 0.8 

packet/slot (well above the channel capacity of 0.368 packet/slot for 

an infinite population model) for 100 time slots. As a result, the 

channel traffic rate increases rapidly as the channel throughput rate 

decreases. The expected channel backlog (defined to be the net area 

between the channel input ami throughput curves and corresponds to 

the expected total number of packets awaiting retransmission in all 

channel users) builds up. At the end of the 100 tima slots, 

the channel input rate is reduced to 0.15 packet/slot in the first 

case. We see that the channel slowly returns to an equilibrium 

state (see Fig. 4-1).  In the second case, the channel input rate is 

reauced at the end of the pulse to 0.25 packet/slot which, a3 we see 

in Fig. 4-2, is not small enough to prevent the channel from saturation. 

Simulations were performed for both cases using the simulation pro- 

gram developed for the infinite population model. The results are 

shown in Figs. 4-3 and 4-4. Note that each simulation point indicated 

actually represents an average value over a period of 50 time slots. 

Four simulations are shown for each of the two cases. We see that 

the fluid approximation results in Figs. 4-1 and 4-2 predict the 
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general trend of the simulations.  However» since the fluid approxi- 

mation does not account for statistical fluctuations, there exist 

large variations among the simulation results. 

In Fig. 4-F, we show, using fq. (4.8), the channel response 

tc a ramp pulse ("impulse"') in the c uinnel input rate.  At the end 

of the pulse, the channel input rate is reduced to a small enough 

value so that the channel is aMe to return to an equilibrium state. 

Note that the channel has a natural frequency equal to the inverse 

of the expected retransmission delay (which is R + (K + l)/2).  (In 

Figs. 4-1 and 4-2 the hannel oscillations are less pronounced as a 

result of a smaller input pulse and a larger K .) 

In Fig. 4-6, we present results from the following experiment 

using Eq. (4.8).  Starting with an equilibrium channel, an input pulse 

is applied until the expected channel backlog reaches some specified 

value B .  The channel input rate is then reduced to some fixed 

value S' .  The time the channel takes to return to an equilibrium 

state (the recovery time) is measured.  (The criterion we adopt here 

for channel equilibrium is that the channel traffic rate must be less 

than one for R + K consecutive time slots.)  The experiment was 

carried out numerically using Fq. (4.8) for both rectangular and ramp 

pulses with different amplitudes.  The initial equilibrium channel 

input rate S = 0.2 or 0.3 packet/slot.  The channel recovery 
e 
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time for the cases considered is shown in Fig. 4-6 as a function of 

B for constant values of S^ . Note that given S' there is a maxi- 

mum value of B above which the channel recovery time is infinite, 

in which case a smaller S' must be used.  It is interesting co note 

that the channel recovery time is insensitive to both tht   shape of 

the input pulse and S . The relevant variables are just B End 

S' .  Recall that the expected channel backlog is the nex.   ^ rea between 

the input and throughput curves. Thus, our results seem to indicate 

that the channel impulse response depends only upon the area under 

the impulse hv"  not its shape, which reminds us of the response of 

linear systems [SCHW 65]! These vesults aLo suggest that instead 

of defining a complex state description such as in the previous 

sections, the channel behavior may be characterized quite adequately 

using the channel backlog size alone as a state variable. 

* 
Four cases are considered: 

(1) rectangular pulse, peak value = 2.35, S - r'..' 

(2) rectangular pulse, peak value = 2.35, S = ^.2 

(3) rectangular pulse, peak value = 1.35, S =0.5 

(4) ramp pulse, S(t) = 0.33 * 0.05t , S - 0.3 
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CHAPTER 5 

CHANNEL STABILITY 

The  slotted ALOHA random access  method enables  a rnulti-access 

channel   .0 be statistically  multiplexed in  an efficient way by a large 

nvimber of users.    Such  a system was  studied in Chapter 3 as  an infinite 

population model;  equilibrium results on the  channel throughput-delay 

p   rformance were given.    However,  simulations have shown that,  the  assump- 

tion of channel equilibrium may not f lw?ys be valid.     In  fact, the  chan- 

nel,  after sorno  finite t:me period of quasi-stationary conditions, will 

drift  into saturation with ^xobability one.    Thus, we realize that the 

equilibrium throughput-del ay  results  are not sufficient to  characterize 

the performance of the  infinite population model,     A more representative 

measure of channel performance  in this  case  is  the stability-throughput- 

uclay tradeoff.    To   to so, we must first   > \ ^.e channel stability  and a 

stability ine^ure. 

We  consider in this  Diup'-C'   0. slotted .j.L0.iA chavel  supporting 

a totax of   M    users,     iTie vj-rial le    M   is assunied to be  large, but 

fini*   .    We show he lew that  the exact  value of    M    is  an  inportant 

stability parameter.     Hie p«.upose of thi_   chapter is  to       .ra-terize 

the  instability phenomenon  in the  following ways: 

• We define stable  and unstable   -lanncl- 
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• Wc show that in a stable channel, cqui 1 ihriurn throughput- 

delay results presented in Diaptcr 3 aie ach.ievable over 

an infinite time horizon.  In an unstable channel, such 

channel performance i achievable only for some finite 

time period before the channel goes into saturation 

• Tor an unstable channel, we define a stability measure 

and give an efficient computational procedure for its 

calculation 

• Using the above stability measure, we examine the 

stability-throughput-delay tradeoff for an unstable 

channel 

5.1   The Model 

In the last chapter, we realized that the source of our diffi- 

culty in analysis lies in the complexity of the state description. 

Below we first define a mathematical model which characterizes the 

channel state by a s i^ie variable.  Practical considerations and 

the model approximations to a physical system will then be examined. 

This mathematical model will also be adopted in the next chapter. 

Our ..icdel is similar to the linear feedback model studied by 

MetcalTe who gave a steady-state ana'ysis of the system behavior 

(METC 73A].  Lu [LÜ 73] studied the same model and characterized the 

time-dependent channel behavior through a set of linear difference 

equations.  However, his approach (like our results in Section 4.1) 

cannot be easily applied to a system with many states (i.e., channel 

users). 
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5.1.1    The Mathematical  Model 

We consider a slotted ALOHA channel with a user population 

consisting of    M    small users   (see Section 2.3}.     Each such ...»er can 

be  in one of two states:    blocked or thinking.     In the thinking state, 

a small  user generates  and transmits  a new packet   in a time slot with 

probability    a  .     A packet which had a channel  collision and  is waiting 

for retiansmission is said to be back logged.    A small user with a 

backlogged packet  is blocked in the sense that he cannot  generate  (or 

accept   from his  input  source)   a new packet  for transmission.    The  re- 

transmission delay    RD    of each backlogged packet  is  assumed to be 

geometrically distributed,   i.e.,  each backlogged packet  retransmits* 

in the  current time slot with probability    p  . 

Let    N      be  a random variable   (called channel  bac^ogi   repre- 

senting the total number of bacKlr^ged packets  at  time    t   .     Given 

that    N    = n  ,  the channel  inpu^  rate at time    t    is    S    =   (M - n)o   . 

Note that    S      decreases  linearly as    n    increases.    Thus,  this will 

also be referred to ai the linear feedback roodeJL    The vector    (N   , S ) 

will be denoted as the channel  state vector.     In this  context,  both 

M    and    a    may be functions  of time.    We shall  assume    M    and    a    to 

be time-invariant unless  stated otherwise.     In this case,    N      is 

a Markov process   (chain)  with  stationary transition probabilities 

and serves  as the state description  for     \e system.    The state space 

will now  consist  of the set  of integers     (0,   1,   2,   ....  M}   .     The 

one-step state transition probabilities of    N      are,   for 

i = 0,  1,  2,   .... 

*Assuming bursty users,  we mast have p >> o   . 
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p..   = Prob[Nt + 1  = j   |  Nt =  il 

ip(l - p)      (1 - a) 

(1 - p)i(M - i)a(l - a)^1"1 

* [i - ipd - P)i''1]ri - o)^1 

CM -  i)a(l - aA1"1!! -  (1 - p)1] 

rM -  i 
.3-1 

J   -   1 .   öJ
 

x(i - a) 
M-j 

j  < i - 2 

j  = i -  1 

j  = i 

j    o    i    ♦    1 

j  ^ i + 2 

(5.1) 

For the infinite population model  in which    M -^ w    and   0^0    such 

that    Ma = S    which is constant and finite,  the above equation becomes 

ij 
-  < 

0 

ip(l  -  p] e 

(1  - p)1 Se"S ♦   [1  -  ip(l 

Se"S  [1  -   (1  - P)1] 

j  s i - 2 

j = i - 1 

.i-1,  -S 
p)      ]e        j  = i 

(j   -  i)l 

j  = i * 1 

j 2t i ♦ 2 

(S.2) 

5.1.2 Practical Considerations 

The above mathematical model approximates a physical system 

in several ways.  First,  M and o will be .ssumed to be time- 
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invariant. However, if we distinguish active and inactive channel 

users such that only acvi/e users will generate packets for trans- 

mission over the channel (with probability a ), the variable M 

in our model actually corresponds to the number of active users. 

In a real system, M will most probably vary during the day with 

alternate periods of heavy and light "load." Since such time periods 

are usually extremely large with respect to our time scale (a packet 

transmission time), M can be regarded as time-invariant during 

each period.  A good rule of thumb in the system design is to op- 

timize the channel performance under the assumption of a heavy load 

since the performance of a lightly loaded channel is relatively in- 

sensitive to the system design. This will be our philosophy in this 

chapter and the next.  Most of our numerical examples are based upon 

the assumption of a heavily loaded channel. If we consider the average 

user think time to be 1-30 seconds in an interactive computer 

communications f*:ivironment [JACK 69].  Our range of interest to be 

assumed for the number of active channel users is between M = 10 

to M = 500 . 

The mathematical model assumption that RD is geometrically 

distributed permits the use of a single variable for the state 

The user think time as defined in our model represents quantities 
such as the real thinlving and typing time of an interactive terminal 
user or computer ircerburst time in the data stream model of Jackson 
and Stubbs [JACK 69]. The upper estimate M * 500  is obtained as 
follows.  From our assumptions in Section 2.3.1 f r a 50 KBPS channel, 
there are 44.4 time slots in one second.  For an average user think 
time of 30 seconds,  0 = 1/(30 x 44.4).  From Mo < 0.37 , we get 
M < 0.37 x 30 x 44.4 = 500 .  Note that our assumption of a 50 KBPS 
channel wa^ quite arbitrary.  If a higher channel data rate is con- 
sidered (say 5 MBPS), we may want to assume different average think 
times to reflect a different type of users. 
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description.  This assumption implies zero deterministic delay 

(R = 0).  In a satellite channel this obviously represents an approxi- 

mation. However, it is physically realizable in radio communications 

over short distances in which channel propagation delays are negligible 

compared to a packet transmission time.  In this case, the duration 

of each channel time slot can be made longer to include R . 

A satellite channel (such as considered in Section 2.3) has a 

round trip propagation delay of 0.27 seconds, which necessitates a 

state description consisting of the channel history for at least R 

consecutive time slotf.  The difficulty in mathematical analysis using 

such a state description was illustrated in the last chapter. More- 

over, it was shown that the channel recovery time following iJ\  input 

pulse depends only upon the channel input rate and the channel back- 

log size. This observation provided the motivation for the current 

mathematical model.  Below we show by simulations that the mathematical 

model also gives excellent prediction of the throughput-delay per- 

formance of a channel with nonzero R .  The conclusion is that in 

most cases of interest, the slotted ALOHA channel performance is de- 

pendent primarily upon the expected value of the retransmission delay 

(RD)  and quite insensitive to the exact probability distributions 

considered. 

In order to use the analytic results of the mathematical model 

to predict the throughput-delay performance of a slotted ALOHA 

channel with nonzero R , it is necessary to use a value of p  in 

the mathematical model which gives the same  RD .  For example, to 

approximate a slotted ALOHA channel with uniform retransmission 
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randomization,  we must  let 

P = R * (K + n/2 (5,3) 

such  that RD = R ♦ (K + l)/2 in both cases. 

We define the length of time for which a packet is backlogged 

to be the backlog time of the packet and denote the average backlog 

time by D, .  To obtain the average packet delay as defined in 

Section 2.3 and illustrated in Fig. 2-2, we must add to D, , R ♦• 1 

time slots, which represent the delay incurred by each successful 

transmission. Thus, we have 

D = Db + R •»• 1 (5.4) 

In the mathematical model    N    = n    implies that  in the tw 

time slot     (M - n)    users are in the thinking state,  each of which 

may generate and transmit a new packet with probability    a  .     Hence the 

channel  input rate is S    =  (M - n)a.    However, when    R    is nonzero,  the 

number of thinking users may be  less  than  (M - n) ,  since some user-; may 

have had a successful  transmission, but    R    time slots must pass by be- 

fore they  learn that "successful  transmission occurred"  (see Section 

2.3).     Suppose  the  channel throughput  rate is S       .     By Little's  result 

[LITT 61],  there are on  the average S        •   R s.ich users   (approximately 

equal  to 4.5  for R ^   12  and S        = - ) which  is negligible when    M    is 

large  (say a few hundreds).     Moreover,  the value of    M    can be adjusted 

to reflect  this  average value.     For our purposes,  this discrepan.7 will 

be  ignored. 
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To show that the throughput-delay performance of a slotted 

ALOHA channel is dependent primarily upon RD and quite insensitive 

to its exact probability distribution, we performed a simulation ex- 

periment with the following probability distributions for RD : 

(1) R = 12 and uniform randomization 

(2) R = 0  and uniform randomization 

(3) R = 12 and geometric randomization 

(4) R = 0  and geometric randomization 

The number of channel users M was assumed to be 200.  The duration 

of each simulation run was 8000 slots.  As in Chapter J, only those 

simulation runr which satisfied our channel equilibrium criterion 

were considered. Two values cf RD were used for each of the four 

cases:  a large RD corresponding to K = 60 in case (1) and a small 

RD corresponding to K = 10 in case (1).  Equivalent values of K 

and p giving the same RD were used for the other three cases. 

In cases (2) and (4), Eq. (5.4) was used to compute the average packet 

delay.  The throughput-delay tradeoffs for all fou^ cases at each of 

the two values of RD are shown in Fig. 5-1. Within the accuracy 

of the simulation experiment, all four cases give practically the 

same throughput-delay performance, lending validity to our claim that 

the channel throughput-delay performance is dependent upon the ex- 

pected value lather than the exact probability distribution of RD . 

(Cf course, in certain uninteresting situations such as K = 1 or 2 

in case (1) or p very close to one in case (3), our claim is ob- 

viously invalid.) 
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In this chsotor and the next, the mathematical model as de- 

fined in the previous section will be studied.  Use of Eqs. (5.3) 

and (S.4) enables the numerical results to be expressed in terms of 

K and compared with previous results on the slotted ALOHA channel 

performance for nonzero R and uniform retransmission randomization. 

5.1.3 Channel Throughput 

Conditioning on N = n , the expected channel throughput 

S ^Cn.o) is the probability of exactly one packet transmission 

in the t      time slot. Thus, 

Sout(n,a) = (1 - p) (M - n)a(l - o)     + np(l - p)  (i - o) 

(5.5) 

For the infinite population model, i.e., in the limit as M f » 

and 0 4-0 such that Ma = S is finite and the channel input is 

Poisson distributed at the constant rate S , the above equation 

reduces to 

Sout(n,S) = (1 - p)n S e"S * np(l - p)"'1 e'S (5.6) 

This expression is very accurate even for finite M if a << 1 and 

if we replace 5 = Mc by S = (M - n)a .  We assume that the condi- 

tion a << 1  is always satisfied in problems of interest to us. 
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Figure 5-2.      Channel Throughput Surface on the In, S) Plane. 

5.1.4 Equilibrium Contours 

In Fig. 5-2, for a fixed K we :how S  (n,S)  as a 3- 

dimensional surface on the (n,S) plane given by Eq. (5.6). Note 

that there is an equilibriiun contour in the  (n,S) plane on which 

the channel input rate S is equal to the expected channel through- 

put S  (n,S).  In the crosshatched region enclosed by the equilib- 

rium contour, S ^(n,S) exceeds S ; elsewhere, S is greater than 
'  out 

S t.(n,S) (the system capacity is exceeded!!.  In Fig. 5-5, a family 

of equilibrium contours for various K arc displayed. We see that 

if we increase the average retransmission delay (by increasing K 

or equivalently decreasing p ), these equilibrium contours move up 

wards. We show below that these equilibrium contours play a crucial 

lole in determining the stability behavior of the channel. 
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Given M and a and suppose a stationary probability distri- 

M 

bution    (P  }    n    exists  for    N    .     Let    N =   / nP     .    The stationary n n=ü ^-H.    n n=0 

channel throughput rate S    must be equal to the stationär)' channel 

input rate. That is, 

M M 

S   « / S  (n,a) P = / (M - n)a P = (M - N)a 
out  ^ out1 ' ; n  ^ l       n      K 

(5.7) 

For the equilibrium values of channel backlog size and throughput 

rate given by the condition S  (n,a) = (M - n)ö to correctly 

predict the stationary average values N and S   , a necessary 

condition is 

M 

S ,(N,a) « X S ^(n,a) p = (M - N)a tS.S) outv » ^  t~i     out *   n  v 

n=0 

For    p « 1    and    ö « 1  , the above approximation is very accurate. 

For example,  consider    K = 60    and    M -   200    in Fig.   5-8 below.     The 

stationary channel throug.i^irc rate   {.computed by the value-determination 

operation in the next chapter)  is  found to be 0.344.    The equilibrium 

value    S0 = 0.346. 

Both the above equilibrium contours and the equilibrium con- 

tours shovn in Figs. 3-3 and 3-4 in Cnapter 3 are obtained under the 

condition that the channel input rate is equal to the channel tbvough- 

put rate. Thus, a point specified by K and S in Fig. 5-3 must give 

rise to the same values of G and D in Figs. 5-3 and 3-4. Any dis- 

crepancy is due to the different approximations made in the two models 

(the  first order approximation moael  and the  linear feedback model). 
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The above claim can be verified by checking corresponding 

points  an the contours.    As an example,  consider the point    K = 40  , 

S = 0.275    and    n = 54.5    in Fig,   5-3.     By Little's  result   [LITT 61], 

the average backlog time is 

D    - -X 
ü     Sout 

54 5 
Applying Eq. (5.4), we get D = Trjyc  f ±3 ~ 211 slots. Now if we 

check the corresponding point in Fig. 3-4 for K = 40 and S = 0.275 , 

we fird that D = 212 slots.  In general, D values giver by the 

linear feedback model are slightly less than those given by the 

first order approximation in Chapter 3. This is especially true 

when K is small such that the approximation in Eq. (5.8) becomes 

less accurate. 

Channel state trajectories on ^he  (n,S) plane 

Given an equilibrium contour on the  (n,S) phase plane^ «e 

consider here qualitatively the dynamic behavior of the channel sub- 

ject to time-varying inputs.  The following example serves to clarify 

similar fluid approximation results in Chapter 4. 

Consider the case in which a is constant while M = M(t)  is 

a function of time as shown in Fig. 5-4.  We usi  the fluid approxi- 

mation for the trajectory of the channel state vector  (N , S )  on 

the  (n,S)  plane as sketched in Fig. 5-5.  Reell that S = (M - N ,a. 

The arrows indicate the "fluid1' flow direction which depends on the 

relative magnitudes of S  (n,S)  and S .  Two possible cases are 
& out r 

shown corresponding to different values of M_  in Fig. 5-4.  The 

105 



Mg — 

^ Mi ^j— _ 
2E      1 

M3 
\       1 1 ^ 

ti     <-2 <-3 

F»gi're 5-^ k      M(t) 

—s 

Fiffurt 5-b.       rluid Approximation Tri|«ciOfitt 

100 



solid line (case 1) represents a trajectory which returns to the 

origina1 equilibrium point on contour C,  despite the input pulse. 

The dashed line vcase 2) represents a less fortunate situation in 

which the decrease in the channel input rate at time t2 is not 

sufficient Lo bring the trajectory back into the "safe" region (in 

which S < S  (n,S)).  Eventually, the channel "collapses" as a 
out J r 

result of an increasing backlog and a vanishing channel throughput 

rate.  Compare these two cases with similar results in Figs. 4-1 

and 4-2. 

WA have demonstrated channel saturation caused by a time- 

varying input.  Next we study the conditions under which the slotted 

ALOHA chanrel with a stationary input (cor?'ant M and a ) can go 

into saturation as a result of statistical fluctuations. 

5.2   Stability Considerations 

We first define whiit we mean by stable and unstable channels and 

characterize their behavior.  A stability measure is then given to quan- 

tify the relative instability of unstable channels. 

3.2.1  Stable and Unstable Channels 

Given M and a , we define the channel load line in the 

(n,S)  plane as the line S = (M - n)a , which intercepts the n-axis 

at n = M and has a slope equal to - —. 

The stability definition 

The channel is said to be stable if its load line 

intersects  nontangentially) the equilibrium contour in 

exactly one place.  Otherwise, the channel is said to be 

unstable. 
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Figur* 3 6.       Stable and Unstable Channels. 
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Examples of stable and unstable channels are shown in Figs. 5-6. 

Arrows on the channel load lines indicate directions of fluid flow 

given by the fluid approximation.  In other words, the arrow points in 

the direction of increasing backlog size if S > S  (n,S) and in the 
Out 

direction of decreasing backlog size if S  (n,S)  >  S. 

Each channel load line may ha^e one or more equilibrium 

points.  A point on the load line is said to be a stable equilibrium 

point if it acts as a "sink" with respect to fluid flow.  It IL  a 

globally stable equilibrium point if it is the only stable equilibrium 

point on the channel load line. Otherwi.se, it is a locally stable 

equilibrium point.  (Each stable equilibrium point is identified by 

a dot on channel load lines in Figs. 5-6 except in Fig. 5-6(c), 

where one of the stable equilibrium points is at n - ^ .)    An equi- 

librium point is said to be an unstable equilibrium point if fluid 

flow emanates from it. Thus, the channel state N  sitting on such 

a point will drift away from it given the slightest perturbation. 

The stability definition given above i« equivalent to de- 

fining a stable channel to be one whose channel load line has a 

globally stable equilibrium point. 

In Fig. 5-6(a), we show the channel load line of a stable 

channel.  Since N  has a finite state space and is irreducible 

(assuming p, a > 0), a stationary probability distribution always 

exists [PARZ 62].  Since  (n , S )  is the only equilibrium point 

on the load line, it gives the steady-state throughput-delay per- 

formance over an infinite time horizon under the approximation in 

Eq. (5.8).  (n , S )  will be referred to as the channel operating 

point.  If M is finite, a stable channel can always be achieved 
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by using a sufficiently large K (see Fig. 5-3). Of course, a 

large K implies that the equilibrium backlog size n  is large. 

As a result, the average packet delay may be too large to be acceptable. 

In Fig. 5-6(b), we show the channel load line of an unstable 

channel. The point  (n , 5 )  is again the desired channel operating 

point since it yields the larger channel throughput and smaller 

rverage packet delay between the two locally stable equilibrium points 

on the load line.  In fact, the other locally stable equilibrium 

point, having a huge backlog and virtually zero throughput, corres- 

ponds to channel saturation.  It will be referred to as the channel 

saturation point. Since M is finite, and assuming p, o > 0 , a 

stationary probability distribution exists for N . However, N 

;.'ill "flip-flop" between the two locally stable equilibrium points 

in tne followirg manner. Starting from an empty channel (K = 0 at 

time zero) quasi-stationary conditions will prevail at the operating 

point  (n , S ) . The channel, however, cannot maintain equilibrium 

at this point indefinitely since N  is a random process; that is, 

with probability one, the channel backlog N  crosses the unstable 

equilibrium point n  in a finite time and as soon as it does, the 

channel input rate S exceeds S ^(n,S) .  Under this condition, r out 

N  will drift toward the saturation point.  (Although there is a 

positive probability that N  may return below n  , all our simu- 

lations showed that the channel state N  accelerated up the channel 

load line producing an increasing backlog and a vanishing throughput 

rate.)  Since the saturation point is a locally stable equilibrium 

point, quasi-stationary conditions will prevail there for some finite 
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(but probably very long)  time period.     In this state,  the communication 

channel can be regarded as having failed.     (In a practical  system,   ex- 

ternal control  should be applied at this point to restore proper 

channel  operation.^    The two  locally stable equilibrium points  on the 

load line of an unstable channel correspond to the channel being "up" 

or "down."    An unstable channel may be acceptable if the average channel 

up time is   large and external control  is  available to bring the chan- 

nel up whenever it  goes  down. 

In Figs.  5-7 and 5-8,  we see how as  the number of channel 

users    M    increases, an origir^Hy stable channel becomes unstable al- 

though the channel  input rate    S      at the operating point remains 

constant  (by reducing    a ).     For    S    =0.36    and    K =  10   , we see 

that  as    M exceeds 80,  the channel throughput decreases  and the average- 

packet delay increases very rapidly.     (These results are obtained by 

solving for the stationary probability distribution of   N      using 

Algorithm 6.5 in the next chapter.    No external  control  is assumed.) 

Using the stability definition and Fig.   5-3,  the maximum value of    M 

that  is  possible without  rendering the  load  line unstable  is 

M        =  79  ,  which exactly gives  the knees  of the  curves  in Fig.   5-7. max »/6 & 

In Fig.   5-8,  by using a  larger value of    K     (= 60)   ,  a  larger    M 
max 

is possible. Note, however, that the average packet delay (= 56 slots) 

for K = 60 is much larger than the average packet delay (= 36 slots) 

for K - 10 .  Given K and S  , M    can be obtained graphically 
o   max & r 

from the equilibrium contours such as shown in Fig. 5-3.  In Fig. 5-9, 

we show M    as a function of K with S  fixed at the maximum 
max o 
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value given K .  Note the linear relationship between M    and K 

for the values shown.  In Fig. 5-10, we show that an originally un- 

stable channel can be rendered stable by using a sufficiently large 

K . 

The channel load line of an infinite population model is de- 

picted in Fig. 5-6(c) as a vertical line. This is an unstable channel 

according to the stability definition.  (Note that n = <» is a stable 

equilibrium point.)  In fact, since N  has an infinite state space 

and S > S t(n,S)  for n > n  , a stationary probability distribu- 

tion does not exist for N .  (See, for example, Cohen [COHE 69] 

pp. S43-546 for such proof.) 

The channel load line shown in Fig. 5-6(d) is stable according 

to the stability definition. However, the globally stable equilibrium 

point in this case is the channel saturation poir.t! Thus, this re- 

presents an "overloaded" channel as a result of bad system design. 

To correct this situation, the number of active users M supported 

by the channel should be reduced. Note that such an action is dis- 

tinct from the dynamic control procedures in the next chapter, which 

are concerned wi.n controlling temporary statistical fluctuations 

given that the channel is not overloaded in the above sense.  From 

now ont  a stable channel will always refer to the load lin3 depicted 

in Fig. 5-6(a) instead of Fig. 5-6(d). 

Let us summarize the major conclusions in the above discussions: 

•     The ste&dy-state throughput-delay performance of a 

stable cnannel is given by its globally stable 
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equilibrium point and approxim?ted by the equilibrium 

throughput-delay results in Chapter 3, 

f     In an unstable channel, the throughput-delay performance 

given by a locally stable equilibrium point can be 

achieved only for some finite time period. 

5.2,2 A Stability Measure 

From the above discussion and referring to Fig. 5-6(b), the 

load line of an unstable channel can be partitioned into two regions: 

the safe region consisting : " the channel states {0, 1, 2, ..., n } 

and the unsafe region consisting of the channel states {n ♦ 1, ..., M}. 

A good stability measure (for these unstable channels!) is the average 

time to exit into the unsafe region starting from a safe channel state. 

To be exact, we define FET to be the average first exit time into the 

unsafe region starting from an initially empty channel (N = 0 at time 

zero) . Thus, FET gives an approximate measure of the average up 

time of an unstable channel.  Below we derive the probability distri- 

butions and expected values of such first exit times. The derivations 

are based upon well-known results on first entrance times in Markov 

chains with stationary transition probabilities [HOWA 71, PARZ 62]. 

Consider the mathematical model in Section 5.1 with constant 

M and a , where M may be infinite.  N  is a Markov process 

(chain) with stationary transition probabilities  (p..) given by 

Eq. (5.1) or Eq. (5.2).  Define the random variable T..  to be the 

number cf transitions which N  goes through until it enters state 

j  for the first time starting from state  i . The probabiUty 
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distribution of T..  (called the first entrance probabilities from 

state i to state j ) may be defined as 

f. .(m) = Prob[T. . = u] 
ij ij 

13 

I r»   i_ -»it+IB vi^*"b  .  .   .      . 
[ProbLN   = j, N   ?< j, h = 1, 

n. = 0 

m = 1 

.., m - 1 I N1 = i] 

m ^ 2 

(5.9) 

The state space S for N  consists of the set of non- 

negative integers  (0, 1,2, ...;n,n +1, ...,M} which is par- 

titicued into the safe region {0, 1, 2, ..., n } and the unsafe 

region (n + 1, ..., M} . Now consider the modified state space 

S^ = {0, 1, 2, .... n , n } where n  is an absorbing state such 
'        c  u u & 

that N  is now characterized by the transition probabilities 

Pii 

ij 

M 

£=n +1 
c 

0 

1 

it 

i, j = 0, 1, ..., n 

i -- 0, 1, .,., nc ; j = nu 

i = nu ; j = 0, 1, ..., nc 

i, i = n 

(5.10) 

Define the random variable T.  to be the number of transitions 
1 

which N  goes through before it enters the unsafe region for the 
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first time starting from state i  in the safe region. T.  is called 

the first exit time from state i .  The probability distribution of 

T.  is defined to be {f.(m)}  . which are called the first exit 
i i   m=1   

probabilities.  It is trivial to show that starting from state 

i (0 < i ^ n ) , the first entrance probabilities into the absorbing 

state n  in the modified state space S'    are the same as the first 

exit probabilities into the unsafe region of S .  Using Eq. (5.9), 

such probabilities are given by the following recursive equation 

[HOWA 71], 

f.  (m) = p.^ 6(m - 1) + > p.: f.  (m - 1)    m > 1 
in v ^  Fin  v    J       Aä ij  jn ^    J 

j.O  J J u i ^ n 

where 

6 im)   = 
1     m = 1 

0     otherwise 

The above equation can be rewritten in terms of the first exit prob- 

abilities as 

M \ 

^V1 j=o  ^^ 0 , i , n 

(5.11) 

where f,(m)  can be solved recursively for m > 1  staiting witt 

f^O) =0  for all i. 
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r      1°° 
The Drobability distribution {f.(in)} .  for the randoip. 7 i ' m=l 

variable T.  typically has a very long tail and cannot be easily 

computed. We had defined earlier FET as a stability measure for an 

unstable channel.  By our definition, FET is the same as the expected 

value of the random variable T .  Let T. be the expected value and 

T.  be '.he second moment of T. .  These moments can be obtained by 

solving a set of linear simultaneous equations.  It can easily be shown 

[HOWA 71] that 

T.  = 
i 

1 with probability   pT 
u 

1 + T. with probability   p. . 

from which we cMain  [HOWA 71,  PARZ 62] 

nc 

^T^  ! +   Z Pü ^7 i = 0,  1,   ... 
j=0    13    J c 

nc 

r.2 « 2 T. - 1 ♦   A p.. T. 
3 1 ]=0    ^    3 

i  = 0,   1,   ..., nc      (5.13) 

Eqs.   (5.12)   form a set of    n    ■»   1     linear simultaneous equations  from 
n 

which    {TTK^Q    can be solved and FET  (= T    )    determined.    After 
n 

{T.}4_n    havo been  found,  Eqs. (5.13)  can then be solved  in a similar 

—2 n 

manner for    {T.   }.c„  . 
i    j-C 

5.3        Numerical  Results 

With the stability me^ure defined above,  we ar? now in a 

position to examine quantitatively the tradeoff among channel  stability. 



throughput  and delay  for unstable  channels.     Below we  first  give a 

computational procedure to solve for    t.     and hence,  FET.    They are 

then  computed for various  values of    K,  S      and    M    (corresponding 

to different  load lines).    The stability-throughput-delay traueoff 

is then shown. 

5.5.1 An Efficient Computational Algorithm 

The solution of the set of simultaneous equations in either 

Eq. (5.12) or Eq. (5.13) involves inverting the  (n ♦ 1)  by (n + 1) 

matrix in p..  for i, j = 0, 1, ...» n^ .  When n  is large, this 

becomes a nontrivial task because of th^ large number of computational 

steps and large cor   uter storage requirement for the  [p^.] matrix. 

The fact that p.. = 0 for j £ i  2 in Eqs. (5.1) and (5.2) 

enables us to use the following algorithm which is very efficient 

in terms of both the computer time smd space requirements mentioned 

above when n  is large. 

Algorithm 5.1 

This algorithm solves for the variables  {t.}. ,, in the fol- 6 i 1=0 

lowing set of (I * 1)  linear simultaneous equations, 

I 

^ho 
+ I POJ ^ 

:. = h. ♦  }      p. . t. 
J   1       i • i  IJ  J j=i-l  -  J i = 1, 2, .,., I 

(1) Define 

ei-1 

fi = 0 
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1 -p II 
1-1" p 

1,1-1 

h I 
1-1      r I.I-l 

(2) For    i=I-l,   1-2,   ....,1    solve recursively 

e. 
i-1   p. . . 

i,   - ?    p. . e. 
3=1 J    J 

f. 
i-1   p. . . 

^1,1-] 
f. - h. - y p., f. 

L       3=1  J J 

(3)   Let 

[ 
t - 0    0   & ■ 1p«) '"J 

i 
j=0 

poj ej - eo 

t. = e. tT + f. 
i   i  I   i 

i = o. i, 2, ..., i-i 

A derivation of cne above algorithm is given in Appendix D. 

This algorithm is sup rior to conventional methods such as the Gauss 

elimination method [CRAI 64] for solving linear simultaneous equations 

in two respects.  First, each p..  is used exactly once and can be 

computed using liq. (5.1") or F.q. (5.2] only when it is used in the 



algorithm. This eliminates the need for storing the  [p..] matrix 

and practically eliminates any computer storage constraint on the 

dimensionality of the problem. Second, the number of arithmetic 

operations  (+ - x M  required by the above algorithm is in the 

order of 21  which is less than that of conventional methods such 

as Gauss elimination. 

5.3.2 Average First Exit Times (FET) 

In Fig. 5-11, we have shown FET as a functon of K for the 

infinite population model and for fixed values of the channel through- 

put rate S  (at the channel operating point). We see that FET 

can be improved by either decreasing the channel throughput rate S 

or by increasing K  (which in turn increases the average packet 

delay)  The infinite population model results give us the worst 

case estimates for channel stability as demonstrated in Fig. S-12 

in which we show FET as a function of M for K = 10 and four 

values of S  .  Note that FET increases as M decreases and there 
o 

is a critical value of M below which the channel is always stable 

in the sense of Fig. 5-6(a).  As M increases to infinity, FET 

reaches a limiting value corresponding to the infinite population 

model with a Poisson channel input.  Fig. 5-13 is similar to Fig. 

5-11 except now the number of users M is 150.  Recall that if M 

is finite, the channel vill become stable when  K is sufficiently 

large. 
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Figure 5-11.     FET Value» for the Infinite Population Model. 
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As an example, we see that in Fig. 5-13 for M - 150 , if the 

channel throughput rate S  is kept at approximately 0.28 arM K = 10 

is used, the channel is estimated to fail once every two days on the 

average.  If this is an acceptable level of channel reliability, then 

no other channel control procedure is necessary except to restart the 

channel whenever it goes into saturation. However, if absolute channel 

reliability is required at the same throughput-delay performance, dy- 

namic channel control strategies should be adopted. Channel control 

schemes will be investigated in the next chapter. 

5.3.3 The Stability-Throughput-Delay Tradeoff 

In Fig. 5-14, we show as a lower bound the optimum performance 

envelope in Fig. 3-4 for the throughput-delay tradeoff of the infinite 

population model. This corresponds to the channel performance at the 

channel operating point indicated in Figs. 5-6.  From these same 

figures, we see that the channel operating point  (n , S ) provides 

no information on the stability behavior of the channel.  The equi- 

librium performance given by (n , S )  is achievable in the long run 

if M is small enough such that the channel is stable; else, it is 

achievaule only for some random time period estimated by our stability 

measure FET. 

A design example 

The designer of a slotted ALOHA channel is thus faced with the 

problem of deciding whether he wants a stable channel by using it for 

a small number of users and sacrifices channel utilization or uses the 

channel to support a large number of users if he is willing to accept 

127 



I 

Figurt «vM,     Stabidtv Throughput Delay Tradeoff. 

128 



a certain level of duinnel reliability (some value of FET).  For 

example, suppose K is chosen to be 10.  (Note from Figs. 3-4 and 

3-5 that K = 10 gives close to optimum equilibrium throughput-delay 

performance over a wide range of channel throughput rate.) Also, 

suppose tnat the channel users have an average think time of 20 seconds 

which, for our usual channel numerical constants, correspond to 888 

time slots. Now if we draw channel load lines on Fig. 5-3 with a 

slope equal to - 888 , the channel is stable up to approximately HO 

channel users.  For M = 110 , the channel throughput rate S  is 

about 0.125 packet/slot.  Frcm Fig. 3-4, the average packet delay is 

roughly 16.5 time slots (= 0.37 second). The same channel can be 

used to support 220 users at a :hannel throughput rate of S =0.25 

packet/slot. The average packet delay is 21 time slots (= 0.47 second). 

But now the channel is unstable!  From Fig. 5-11, for K = 10 and 

S = 0.25 , the average up time (FET) of the channel is approximately 

two days for an infinite population model.  Note that this value re- 

presents a lower bound for the FET of M = 220 .  Thus, we see that 

if a channel failure rate of once every two days on the average is an 

acceptable level of reliability, the second channel design is much 

more attractive than the first since the number of channel users is 

more than doubled at a modest increase in delay. 

In addition to the infinite population model optimum envelope, 

we also show in Fig. 5-14 two sets of equilibrium throughput-delay 

performance curves with guaranteed FET values.  The first set consists 

of three solid curves corresponding to an infinite population model 
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with channel FET ä l day, 1 hour and 1 minute. Again, these results 

represent worst case estimates when M is finite. The second set 

consists of two dashed curves corresponding to M = 150 witn channel 

FET ^ 1 day and 1 hour. These results were obtained by looking up 

the values of K and S  in Fig. 5-11 or Fig. 5-13 corresponding 

to a fixed FET. The average packet delay was then obtained from 

Fig. 3-4. This figure displays the fundamental tradeoff among 

channel stability, throughput and delay.  In the next chapter, we 

devise strategies to dynamically control the channel to achieve truly 

stable throughput-delay performance close to the optinum performarce 

envelope. 
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CHAPTER b 

DYNAMIC CHANNEL CONTROL 

6.1   Introduction 

Before we introduce channel control procedures, let us first 

examine the motivation for dynamic channel control. 

In Chapter 1, we indicated that our interest in the multi- 

access broadcast channel stems from its capability to provide com- 

munication among a large population of users.  In Chapter 3, 

equilibrium throughput-delay tradeoffs were given for the infinite 

population model (which approximates a large population of small 

users). The lower envelope of these tradeoffs characterizes the 

optimum channel performance.  In Chapter 5, we rhowed that when the 

number of channel users M is sufficiently small, the channel is 

stable and the optimum channel performance envelope can actually 

be achieved over an infinite time horizon. However, for a iargv 

M , the channel is unstable.  In this case, the optimum throughput 

delay performance is achievable only for some finite time period 

before the channel goas into saturation. 

In this chapter, we study dynamic channel control procedures 

which will enable an originally unstable slotted ALOHA channel not 

only to support a large number of users, but also to achieve a 

throughput-deI ay performance close to the optimum envelope with 

guaranteed channel stability. 

The linear feedback model described in Section 5.1 is assumed 

throughout.  In addition to this assumption, each channel user is 
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assumed to know the exact current channel state (channel backlog size). 

This assumption is necessary in the mathematical model, but will be 

relaxed when we consider heuristic (but practicil) control procedures 

based upon the insights gained from the analysis. 

Here we siunmarize the contents of this chapter.  In Section 

6.2, we give a brief introduction of Markov decision theory for a 

finite-state Markov process (chain) and outline Howard's policy- 

iteration method. Several control procedures are considered in 

Section 6.3, The first, known as the input control procedure (TCP), 

allows the channel to either accept or "reject" new packets from their 

sources. The second, known as the retransmission control procedure 

TRCP), allows the channel transnu *-ers to impose either large or 

small retransmission delays on previously collided packets. The 

third, known as the input-retransmission contro1 procedure (IRCP), 

is a combination of the first two as its name suggests. Two cost 

(performance) measures are defined, namely, the stationary channel 

throughput rate S    and the average packet delay D .  It will be 

shown in Section 6.4 that for each of the above control procedures, 

an optimal policy exists (and can be found by the policy-iteration 

method) which will maximize L    and minimize D at the same time. 
out 

An efficient computational algorithm is given in Section 6.5, which 

enables the use of the policy-iteration method for a large state space 

with relatively small computational and storage demands on the computer. 

Both numerical and simulation results are then given in Section 6.6 

for the throughput-delay performance of the controlled random access 

132 



channel. In all cases considered, the optimal control policies were 

found to be of the control limit type. However, a rigorous proof of 

this result remains as an open problem. 

In Section 6.7, we recognize the fact that thr exact current 

channel state is not known to the individual channel users.  A pro- 

cedure is proposed which estimates the channel state and applies 

the above optimal control policies using this estimate.  Another re- 

transmission control procedure which circumvents the state estima- 

tion problem is also su^öJSted.  These control procedures sre then 

tested through simulations and found to give not only a stable channel, 

but also achieve a throughput-delay performance close to the optimum 

performance envelope. Other channel control schemes proposed by 

Metcalfe [METC 73A] and Rettberg [RETT 73C] are then examined.  Finally, 

we briefly discuss some channel design considerations, 

6.2   Some Results from Markov Decision Theory 

Most of the results in this section are taken from Howard 

[HOWA 60, HOWA 71J and Ross [ROSS 70].  Also, see Parzen [PARZ 62] 

for a general reference or Markov chains. 

6.2.1 Markov Processes with Costs 

We consider a finite Markov process (chain) N  which is ob- 

served at time points  t = 0, 1, 2, ...  to be in rr.e of a finite 

number of possible states.  The set of states S will be labelled 

by the nonnegative integers  (0, 1, 2, ..., M) .  The Markov process 

is assumed to have stationary state transition probabilities  {p..} 

(unless stated otherwise).  The process incurs a cost  c..  when it 
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makes a transition from state  i to state  i . Thus, "he Markov 

process starting at some initial state generates a sequence of costs 

as it makes transitions from state to state.  Each c.  is assumed 

to he hounded (i.e., c.. < » ) ?nd independent of time (unless indi- 

cate,! otherwise]. 

We define C.  to be the expected immediate cost for state  i 

and v. (r)  to be the expected total cost that the process N  incurs 

in the next T + 1 time units starting in statp i .  Hence, 

C- = A P- • c . (6.1: 

T 

v.Cr) = E Vc 
^         t 

N0=i 
t=0    N . 

(6.2) 

The expected total costs    v.(xl     are  given by the  following recurrence 

relation   [HOWA 60] 

M 

v. (T)  =    /    p..   I c. .  *• V.(T -   li I i  = 0,   1,  2, 

T  =   1,  2,   3. 

..,  M 

16.3} 

M 

+ y -   S   *    Z   Pij   Vj    (T   -   1) 

This  set  of equations  can be sol   v 1 recursively  ^or the set  of expected 

total  costs     {V.(T)}     for any  finite .     However,  when    T     (called 
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the time horizon of the process.. N ) is very large, a more suitable 

cost ie -t is the cost rate (i.e., expected cost per unit time) of 

the prcr,. ... Thus, we define 

A- 
= lim   1 

T ♦ 1 i 
t=0 N 

N = (6.4) 

where the  limit  always exists since the    c..     are bounded. 

Assuming that    N      is  an irreducible Markov chain and since 

i)    is  finite,  N      possesses  a unic.re stationary probability distribu- 

tion     O^^o    such that   [PARZ 62] 

M 

7T .    =       /       TT. 

i=0 i    ij 
j  =  0,   1,   ...,  M 

TT.     ^    0 
1 

i  = 0,   1,   ...,   M (6.5) 

and 

M 

l 
i«0 

From the  ergodic theorems   in  the theory of Marko'   vhains   [CHUN 67], 

we then have the  following  important  result 

M 

g.     =      2^     TT.    C. 
1      j^O    -'    3 

Vi   =  0,   I,   ...,   M (6.6) 
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where g is defined to be the cost rate or expected average cost of 

the process N  and will be used extensively as the cost (performance) 

measure undei various definitions of the state transition costs  {c..} 

When T  is large, the expected total costs of the process, 

V-^T) , are then given [HOWA 60] asymptotically by 

v.CT) = g '.* V.        i = 0, 1, 2, ..., M      (6.7) 

whera v  is referred to as the asymptotic intercept of state i . 

For a large T , r, is the only significant variable.  (However, it 

will be shown below that in a Markov decision process, relative values 

of the v.  will enable us to solve for an optimal control policy.) 

6.2.2 Markov Decision I rocesses 

We now introduce decision-making in the Markov process described 

above.  Let A be a finite set of possible actions such that corres- 

ponding to each action a e A , the set of state transition probabili- 

ties  (p..(a)} and costs  {c..(a)}  (or equivrlently the expected 

immediate costs  {C.(a)}) are uniquely specified.  We define a policy 

f to be any rule for choosing actions and P to be the class of all 

policies.  The action chosen by a policy at time t may, for instance, 

depend on the history of the process up to that point or it may be 

randomized in the sense that it chooses action a with some proba- 

bility P , a e A . 
a 

Suppose the acticn a" is given by the policy f at time t , 

which in turn specifies the state transition probabilities and costs 
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at that  time.    Thus,     f    determines both the evolution in time of 

the Markov process    N      and the sequence of costs  it  incurs.     For 

a    policy    f    which generates the  following sequence of actions   in 

time     (a  ,   a  ,  a  ,   ...,  a ,   ...}   ,  we define the expected average 

cost per unit time for   N      which was  initially in state    i    as 

*i{f) = J^   7TT   Ef S   C,^)    I   N0=   i 
t=0    N 

(6.8) 

where the limit always exists, since the costs are assumed to be 

bounded; the expectation is taken conditioning on the policy f . We 

say that the policy f  is average cost optimal over all policies 

if 4). (f*) = m^p (^.(f)  for all 1 e S , 

An important subclass of all policies is the class of sta- 

tionary policies P    A stationary policy is defined to be one 

which is nonrandomized and the action it chooses at time t depends 

only on the state of the process at time t .  Thus, a stationary 

policy f is a function f(-) : S -► A . The Markov decision process 

employing a stationary policy f is in fact a Markov process with 

stationary transition probabilities and costs as described in the 

previous section.  In this case, fiom  Eq. (6.6) 

M 
V 

(Mf) = 8^ = 2- TT (f)C.(f)    Vi =: 0. 1, ..... M 

(6.9) 

We give the following important result concerning stationary policies. 
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Theorem 6.1 Given a finite state space, if every stationary 

policy gives rise to an irreducible Markov chain, then there exists 

a stationary policy f  which is optimal over the class of all 

policies.  Thus, 

mm 
g(f ) = (^.(f ) = "'^p ^(f)     Vi = 0, 1, ..., M 

Proof    See   [ROSS  70]. 

The  conditions  in Tneorem 6.1 will   always be satisfied in our 

optimization problems below.    Thus, by the above theorem, we can and 

shall  limit our attention only to the class of stationary policies  in 

our search for an optimal policy. 

In the  following sec  ion,  we outline a procedure which solves 

for the cost rate    g    of a Markov decision pvoccss  given a stationary 

policy    f  .     An  iteration method is  then described, which  leads  to an 

optimal  stationary policy within a finite number of iterations. 

6.2.3    The Policy-Iteration Method   [HOWA 60,  HOWA 71] 

Given a stationary policy f , the cost rate g of the re- 

sulting Markov process can be detemiincd as follows. Substituting 

Eqs.   (6.7)   into Eqs.   (6.3),  we obtain 

g ♦ v.   =  C.   +    /     p..   v. 
j=0     LJ    J 

i  =  0,   1,   . ..,  M       (6.10) 

where the dependence of p..  and C.  on the stationary policy  f 

are suppressed.  There are  (M ♦ 2)  unknown variables, namely,  g 
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and {v.}  in the  (M ♦ 1)  linear simultaneous equations.  We see 

that Eqs. (b.10) are also satisfied if the v4  are replaced by 

v. ♦ b , where b is any arbitrary constant. Thus, although g can 

be determined uniquely, only relative values of the v.  can be ob- 

tained by solving Eqs. (6.10). Fortunately,  g is the cost (per- 

formance) measure of the Markov process that we are interested in; a 

set of relative values of the v.  is sufficient for the purpose of 

the following iteration method in solving for an optimal policy. 

The Pol icy«» Iteration Method 

The basic iteration cycle in the policy-iteration method is 

diagrammed below in Fig. 6-1. 
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r^ 

Value-Determination Operation 

Use    p..     and    C.     for a given stationary policy to solve 

M 

g + v.=C.   -^/p.v. i  =  0.1,   ...,M 1      1    jTb   13   3 >   >      * 

for g and the relative values of v. (by setting vn = 0). 

Policy-Iraproveinent Routine 

For each state    i   ,  find the action    a    in A that : min- 

imizes the following test quantity 

M 

(a)  ♦   /    p..(a)  v. C : 

using the relative values    v.     of the previous poli cy. 

Then    a becomes the decision in state    i for the new 

policy; C.(a)    becomes    C     and    p..(a) i    '                          i               rij 
becomes Pij • 

k-1 

Figure 6-1 The policy-iteration cycle. 

We may enter the iteration cycle in either box with an arbi- 

trary initial policy or an arbiträr/ set of v. .  It is necessary 

to require that in the pol icy-improvement routine, if the decision 

f(i}  for state i  given by the old policy yields as small a value 

for the test quantity as any of the other actions in A , the decision 
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is left unchanged. The stopping rule is as follows: 

The optimal policy has been reached ( g is minimized) 

when the policies on two successive iterations are 

identical. 

The following theorem on the policy-iteration method is due to Howard. 

Theorem 6.2  (i) Suppose the pol icy-improvement routine has 

produced a policy f9 that is different from the previous policy f, , 

then 

g(f2) < gCfp 

(ii) An optimal policy is obtained within a finite numü^ of iterations. 

Proof Sec [HOWA 60]. 

6.3   The Controlled Random Access Channel Model 

Consider the stable and unstable channels in Figs. 5-6(a) and 

(b). The channel operating point  (n , S )  gives the throughput- 

delay performance of a stable channel. However, for an unstable chan- 

nel, the throughput-delay performance given by the channel operating 

point  (n , S )  is what we strive to achieve over an infinite time 

horizon through the use of dynamic channel control. 

In this section, channel control procedures are proposed and 

formulated under the assumption that all channel users have perfect 

We assume that the channel operating point has been optimized over 
(such that n  is minimized) and tl 

adopted as the operating value of K . 

K  (such that n  is minimized) and that the optimal  K has been 
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knowKuge of the current channel state (channel backlog size).  We 

shall refer to this assumption as perfect channel state information. 

6.3.1 The Markov Process 

Consider the linear feedback model in Section 5.1, which re- 

presents a slotted ALOHA channel supporting input from M small in- 

dependent users. The channel backlog size N  at time t is taken 

to be the state variable with the state space S = (0, 1, 2, ..., M} . 

As before, we assume that each channel user in the thinking state 

generates and transmits a new packet independently with probability 

a in a time slot; each channel user in the blocked state independently 

retransmits his backlogged packet with probability p in each time 

* t 
slot.  Thus, with constant M , a    and p , N  is a finite-state 

Markov process with stationary state transition probabilities given 

by Eqs. (5.1) which we rewrite below. 

pir 

o 

ip(l - p)  (1 - a) 

(1 - p)1(M - i)a(l - G) 
M-i-1 

* 11 - ip(l - p)1"1! (1 - G)^1 

1 - (1 - P)1! (M - i)o(l - a)""1"1 

"-MG^U -G)
M
^ 

We again assume    p = 
1 

3  5 1-2 

j  =  i  -  1 

3  =  i 

j  =  i +  1 

j ;> i + 2 

0 < i,   j   s M 

(6.11) 

in our numerical  computations  as  in 
R + (K ^ D/2 

Chapter 5. Our numerical results will be presented in terws of K so 
that they can be compared with previous results. 
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Cost  rates  and performance rncasures 

The performance measures  of interst  to us  are the stetionary 

channel throughput rate    S and average packet delay    D .    We show 

here how wc can define the expected immediate costs    C.     such that 

either    S or    D    can be obtained  from the resulting cost rate out ö 

g    of the Markov process. 

Given that the Markov process    N      is  in state    i    at time    t   , 

the expected channel throughput  in the time slot  is  given by Hq.   (5.5), 

which we rewrite below as 

Sout(i) = ipCl - p)1"^! - a)^1 +  (1 - p)1(M - 1)0(1 - a)^1'1 

(6.12) 

Now define the expected immediate (throughput) cost for state i as 

C. = - S  fi) (6.13) i     outv ' v   ' 

and define the resulting cost rate of N  as g .  It can easily be 

shown from Eqs. (6.11) that N  is aperiodic and irreducible for 

p , a > 0 .  Thus, N  has a stationary probability distribution 

1 {TT.}   .     Using Eq.   (6.6),  the  stationary channel throughput  rate is 

given by 

M 

1 S        =   /S       fi)   TT.   = -g                                                     (6.14) 
out      /--'     out    ^    i        *s i=0 

Note that    S          must be equal to the stationary channel  input  rate 

f 
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M 

i 
i=0 

= 2L   (M - i) a TT. Cö.15) 

To obtain the average packet delay D , we define the expected 

immediate (delay) cost for state i as 

C. = i 
i 

This accounts for the waiting cost of i packets incurred in the 

current time slot.  In Markov decision theory terminology, this is 

sometimes referred to as the holding cost.  Defining the resulting 

cost rate of the Markov process as gj > we have fTom  F^* ^-^ 

M 

^d 
i=:0 

which  is just  the  average channel backlog size    N    by definition. 

Applying Little's result   [LITT 61],   the  average backlog time    Db    of 

a packet  is   from Eq.   (6.14) 

öS g out ss 

and the average packet delay is  from the above equation and Eq.   (S.4) 

0=  - ^L   ♦  R+   1 v6.16) 
go 
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where R ♦ 1 represent the packet transmission time and propagation 

delay incurred by every packet in its successful transmission. 

We note that the cost rates g and g. can be obtained using the 

value-determination operation in the previous section given the ap- 

propriate definitions of the expected immediate costs C. . The per- 

formance measures of interest S    and D can then be computed 

from g  and g. using Eqs. (6.14) and (6.16). 

6.3.2 Channel Control Procedures 

By channel control procedure we mean the set of available 

actions in the action space A .  Given the above Markov process 

formulation of the channel, we propose the following control proce- 

dures for which there exist policies which convert an unstable channel 

into a stable channel: 

(1) The input control procedure (TCP) 

(2) The retransmission control procedure (RCP) 

(3) The input-retransmission control procedure (IRCP) 

In Appendix F, we consider a general dynamic channel control procedure 

which includes ICP, RCP and IRCP as special cases. 

The input control procedure (ICP) 

This control procedure corresponds to the action space of the 

Markov decision process, A = (accept, reject} = {a,r} .  Thus, in 

channel state i  (i.e., given that N = i) , the actions are: 
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accept (action = a) or reject (action = r) all new packets that 

arrive in the current time slot. 

The retransmission control procedure (RCP) 

Under this control procedure, the action space A = (p , p^} 

= (o, c) where p  and p  are said to be the operating and control 

values of the retransmission probability p .  CThrough Eq. (5.3), 

p  corresponds to K  which gives the desired operating equilibrium 

contour and p  corresponds to K  which is large enough to render 

the channel stable.)  Obviously, we must ha>"      ^  .  Thus, in 

channel st^tc i , the actions are:  every b«cVlogged packet is re- 

transmitted in the current time slot with probability p  (action -  o) 

or with probability p^  (action = c). 

In both control procedures, we see that channel stability is 

obtained through additional delays incurred by some or all packets 

in the system.  However, th3y differ in their selection of such packets 

when the current channel state calls for "sacrifice" (i.e., choosing 

an action = r or c).  In ICP, new packets are delayed ("rejected"); 

whereas in RCP, the backlogged packets are delayed for the social good. 

The input-retransmi_ssion control procedure (IRCP)_ 

This control procedure is a combination of ICP and RCP with 

the action space A = {(accept, p ), (accept, p ), (reject, p ), 

As discussed in Section 2.3.2, a new packet is said to arrive in the 
current time slot only after it has been generated by the channel user 
(cr its external source), processed and ready for transmission over the 
channel in the current time slot.  In the mathematical model, the re- 
jected arrival is lost and the channel user generates a "new" packet in 
the next time slot with probability a , etc.  In a practical system, 
this new packet must actually be the previously ^ejected packet!  We 
shall elaborate on this interpretation further below. 
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(reject, p }} = (ao, ac, ro, re) .  Thus, for example, when the action 

re  is taken, both new and hackloggf^ packets are delayed. 

By Theorem 6.2, an optimal stationary policy can always be 

found.  By virtue of Theorem 6.1, the optimal statioucrv policy given 

by the policy-iteration method is optimal over the class of all 

policies P for the given control procedure (action space A ) .  How- 

ever, we do not claim that the control procedures we consider here give 

optimal policies over the class of all possible control procedures 

(action spaces).  There are two reasons why we do not consider more 

multi-actior control procedures other than IRCP.* (For example, RCP 

may be generalized so that A = (p , p , p  p } ."I  First, we 

realize that the channel state is in reality not exactly known but 

must be estimated.  V/hen A has many actions, the partitioning of 

the state space S induced by the control pox.;.y f may be too 

"fine" compared to estimation errors. Secnd, as we show below, the 

control procedures proposed above will give channel throughput-delay 

tradeoffs very close to the optimum envelope of the infinite population 

model (for which we ignored stability considerations).  Hence, more 

elaborate control procedures will only give minute incremental im- 

provement in channel performance. 

A stationary policy can be defined by a fuuet on  f : S -^ A , 

For  ICP, any stationary policy is uniquely specified by the sets S 
a 

and    S      such  that    5^S    uS     ,S     nS    -  <$>     (the null  set)   and 
r a        r  *     a        r v 

f(i)  - 
i  e S 

(6.^7) 
i e S r 

A general dynamic control procedure is considered in Appendix F . 
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Similarly, a stationary policy of  RCP is given by 

f(i) = 
i e S 

i F. S 
((..18) 

where ^ -J J ^ S ar.J S    n $ = r 
u   c o   c 

Within the class of stationary policies, a subclass of policies 

known as control limit policies can be described as follows for a 

two-action space A .  Either the policy specifies the same acticn 

for all vhe states in S or there is a critical state n 

(= 0, 1, 2, ..., M - 1)  such that if the policy specifies one action 

for states 0 to n , the other action is specified for states 

n + 1 to M . n is sziu  to be the control limit. 

In Figs. 6-2 or.d 6-3, we show channel load lines corresponding 

to channels under TCP and RCP respectively.  We find it easier to 

illustrate in both cases with control limit policies.  In Fig. 6-2, 

h is the ICP control limit. When N ^ n , the channel input rate 

£ = (M - N )o ; when N" > n , S = 0 .  Similarly, suppose n is 

the RCP control limit in Fig. 6-3. When i     - n , K = K , but as 

soon as N  exceeds n , K = K  is u^d.  Note that both, controlled 

channels are stable Sinct* the channel saturation point as shown in 

Fig. 5-6 (b) no longer Ai^ts. 

6.3.3       iput Control Procedure jICP) 

Und«    is control procedure, recall that the action :<pace 

A - {accept, reiect] = fa, r)   .     We give below the state transition 

probabilities and costs of the Markov process N'  induced by ca«.'» 

action in A . 
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Figure 6-2. An ICP Control Limit 
Policy Example. 

Figure 6 3.       A RCP Control Limit 
Policy Example. 

State transitior probabilities 

Suppose the channel  is  in state    i   (= 0,   I,   ...,  M)     and the 

stationary control  policy    f(i)  =  a    then    p..(a)     is exactly as 

given  i.i  Lqs.   (6.11), which we rewrite as 

Pi   U) 

ipfi  -  p)       H   -  a) 

(1   -  p)3fM ■   iV}fl   - o)1^"1'1 

=   < + I 1   -   !,){!   -   p)1"1 1  (J   -  n}^1"1 

i - 0 - p)1 I (M - nan - o)M'1''1 

M -   l 

i   -   i 

M-M-o)^ 

3  < i - 2 

j  = i - ] 

j  = J 

j = i * 1 

i  > i ♦ 2 

0 <  i , i - M 
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Suppose    f(i)  =  r  ,  then    p..(r)     is  given as  follows 

p..(r) =   • 

ip(l      ■    p) 

1   -   ip(l       p) 

0 

.1-1 

j   =   i   -   1 

othervsise 

(6.20) 

F.xcept in the uninteresting cases when c , p = 0 or 

f(i) = r for all  i t S , the Markov process N  under this control 

procedure is aperiodic and irredu  'le satisfying the conditions of 

Theorem 6.1. 

Rejection costs 

As in the Markov process formulation of an uncontrolled channel 

described in Section 6.2.1, exported immediate costs are incurred in 

every time slot.  Depending on 1 he performance measure (D or S  ), 

there is a holding cost which pertains to packet delays and there is 

u negative cost which is the expected channel thioughput in that time 

slot.  Wiin ICF, we also introduce the rejection cost d  which is 

the expected cost in units of delay per packet arrival rejected. 

For an interpretation of this cost, in terms of its effect on 

pocket delays, we consider as an example the possible terminal access 

communications environment depicted in Fig. 6-4.  A person sitting 

at a terminal K       rates a new packet with an average think time >f 

— whenrver his previous packet has been successfully transmitted. 

If, at the time of a packet arrival, the channel is in the reject 

state, this packet is lost in the sense that it is not transmitted 
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Figure 6-4.       An Inttrpretation of ttw Rt)«ctian Cott. 

over the broadcast channel at this time.  In a practical situation, 

the user may be informed of the event and must enter some command 

character to "restart" the packet.  Hence, the cost in terms of 

delay is probably in the order of an average think time  ( = — ) • 

Let 

d = - (6.21) 
r  a 

We shall assume ct = l  throughout this chapter.  This assumption is 

actually necessitated by our Markov process model in Section 6.3,1, 

where each thinking user is assumed to transmit a new packet (which 

may be a previously rejected new packet) with probability ö  in a 

time slot. 

It is easy to think of situations in which  a  is not one. 

For example, we may want to insert additionn1 delays to rejected 
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packets or to account for some terminal processing lime by using 

a > 1 .  On the other hand, the human user may be very impatient and 

restarts his rejected packets very quickly such that  a < 1 .  (In this 

case, the terminal can always insert additional delays to make u = 1.) 

In any case, if a ^ 1 , OIT channel state description will become 

more complex since we must distinguish blocked users who transmit in 

a time slot with probability p , thinking users with rejected packets 

(j 
who transmit with probability — and the other thinking users who 

transmit with probability a .  Assuming a = 1  in ICP (and also IRCP) 

simplifies the state description and consequently the amount of compu- 

tation required in the policy-iteration method. 

Average packet delay and channel throughput rate 

Consider a stationary control policy f : 5 > A uniquely- 

specified by the sets S  and S  .  The expected immediate (delay) a r 

costs   for state    i    are   (assuming    a -   1) 

C.(a)  =   i (b.22) 

C. (r) = i ♦  (M -  i) a d 

=  i  *   AM -   n 

= M (6.25) 

From Hq. (6.9), the cost rate rf the process  N  under policy  f  is 

given by 
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=   >. i TT.fn * d   A 
1=0 ieS 

(f)   *  d^.    ^     CM  -   i)C  IT. (fl (5.24) 

r 

where     {Ti.ff}}     arc the  stationary probabilities  of the process    N 

whose  state  transition probabilities     {p..(fVv     are  given by Hqs.   (6.19) 

and  (6.20).     Define 

V 
X    =     >     (M -   i)a TT.(f) (6.25) r     «re l 

ieS 

to be the rate of packet rejection for all the channel users.  Thus, 

liq. (6.24) can be rewiitten as 

M 

g.Cf) -  J\  1 TT. 'f) + X  d 
^d     *-'rk i      r r 

i=0 

= N 4- N (6.26) 

where by Little's result [LITT 61], N is the average chaniiel backlog 

size  ami N  is i he average number of rejected packets in the system. 

Considering Pig. 6-5 and applying Little's result once more, the 

average packet delay (including rejection delays) is given by 

gd(f) 
I) - g2  + R + ] (6.27) 

1 out 
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Figure 6-5.       Average Number of Packets in the System Under ICP. 

where  as  before    R ♦   1     account   for the packet  transmission time and 

propagation dclav  for the successful  transmission  and    S is  the 11   ^ - out 

stationär)'  channel   throughput   rate  to be  obtained   in  the  following 

manner. 

Given policy    f    as  above,  we define the  following expected 

immediate   (throughput)   costs 

C.(a)   = 
i ■W- ^ 

r ■    ,i      . i _ ^r,     . M- i [ip(l-p)      ri-a) 
i M-i-1 a-p) (M-nod-a)      l- (6.28) 

C.Cr)  =   -Sout(i,   rj 

-ipfl   -   p 
i-1 (6.29) 

i: i 



Using the above definitions, the cost rate o^ the Markov process  N 

is  by hq.   (6.9) 

Mf) = - I ..(f) sout(i. f) 
i=ü 

Thus,  the stationary channel   cbroughput  rate  is 

S =  -  g   (f) (6.30) 
out fts 

The average packet delay is from Hq. (6.27) 

gd(f) 
D = - -irpr-* R + 1 (6.31) 

gs(f) 

Given f ,  gjCf)  and  g (f)  can be calculated using the value- 

determination operation in the policy-iteration method assuming 

delay and throughput costs respectively. 

6.3.4 The Retransmission Control Procedure (RCP) 

Under this control procedure, the action space A = {p , p } = 

(o, cl .  We give below the state transition probabilities and costs 

of the Markov proces4-  N  induced by each action in A . 

State transition probabilities 

Suppose the channel is in state  i ( = 0, 1, ..., M)  and 

action  p  is selected, then p..(o)  is given by 



0 

1  PoU  * Po)       (1   " ^ 

j   ^ i   -  2 

i  =   i  -   1 

(l-p^^M-ilad-a)^1'1 -  [l.ipo(l-po)i*1](l-a>M"i 

P^Col = 

[1  -  (1 - pj'KM -  i)a(l   - a) 
M-i-1 

M - i 

J   -  i 

a-       (1  - a)    J 

If action    p      is  selected,  then    p. .(c)     is  given by 

i  =  i 

j     -:     i     +     1 

j  > i + 2 

(6.3:) 

P.-Cc) = 

0 

i pc(l - pj1'^! - a)M'i 

j  < i - 2 

i  =  i- 

(l-p )1(M-i)a(l-o)M"1"1 +  [1-ip (1-p }1"1](l-a) 
M-i 

J = i 

[1  -   (1  - pc)ll(M -  i)a(l  - a) M-i-1 i  =   i  *  1 

M -   i 

)   -   i 

a^O  - a)M^ j > i  - 

(6.33) 

Except   in the uninteresting cases when    a   ,  p    or p    = 0   ,  the 

Markov process    N      under this  control  procedure  is  aperiodic  and 

irreducible  satisfying  the  conditions  of Theorem 6.1. 
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Average packet delay and channel throughput rate 

Consider a stationary control policy f : S -► A uniquely 

specified by the sets S  and S . The expected inunediate (delay) 

cost in state    is just the holding cost for both actions, 

C.(o) = CJc) = i (6.34) 

As before, the resulting cost rate of N is given by Eq. (6.9) 

M M, 

ßH^f) = ^ TT.(f)C.(f] = 2 i Tr (f) « N (6.35) 
a i=0 1   1     i=0   1 

Thus, the average packet delay is given by F.q. (6.27) 

gd(f) 
D = —  + R + 1 (6.27) 

out 

where S    is the stationary channel throughput rate. 

The expected immediate (throughput) costs are given by 

C.(o) = - S  fi, o) 
i       out 

[i p^l-p^^^l-a)^1 * (l-po)
i(M-i)a(l-a)M~1-1l 

(6.36) 
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cyo = -sout(i, c) 

[i Pc(l-Pc)i"1(l^)M":i +  (l-pc)
1(M-i)ari-a)M'1'1] 

(6.37) 

Using the above definitions,  the cost  rate of the Markov process    N 

is  given by 

M 

ftS .•*-!       1 OUt       ' 
1=0 

Thus,  the stationary  channel  throughput rate  is  again 

S        =   -  g   (f) (6.30) | out fts 

and the average packet delay  is 

gd(f) 
D = - ATr+ R + 1 ^•31^ 

6.3.5 ^Hie Input-Retransmission Control Procedure (IRCP) 

This control procedure is a combination of ICP and RCP.  The 

action space A = {(accept, p ), (accept, p ), (reject, p ), 

(reject, p )} = (ao, ac, ro, re} .  We give below the state transition 

probabilities and costs of thv  Markov process N  induced by each 

action in A . 
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State  transition probabilities 

For    i  =  0,   1,   2,   ...,  M 

p..(aol  = 1
J 

0 

i P0(l  * v/'lil  - of'1 

J   ^  i  -  2 

j  =  i  -  1 

(l-P0)i(M-i)a(l-a)M-i-1  .   [l-ip^l-p^^^d-a)^1 

[1  -   (i  - pft)
X](M - i)a(l   - a) 

M -   i \ 
o3'1   (1  - a)N1-J 

j  - i/ 

M-i-l 
1   =  i 

j = i + 1 

j   ^  i   +  2 

(6.3C 

ipca - P/'^I -of-1 

j   ^ i   -  2 

j  = i  -  1 

p..Tacl   = 

(l-p^'CM-Dad-a)^1"1 +  H-ip^l-p^^^d-a)1 

/ J = i 

[1  -   (1  - P^HM -  i)a(l   - a^1"1"1        j  =  i  +  i 

M  -   i 

J   -   i, 

la^d  .-a)M^ j   ^  i  +  2 

(6.59) 
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i po(l  - FO) j  =  i -  1 

p.-Cro) =     / 1 - i po(l  - p^1'1 j =  i (6.40) 

) otherwise 

i pca - P/"1 : - i -1 

p..(re)  =      / 1  -  i pc(l  - p^1'1 j  =  i (6.41) 

) otherwise 

As before, we neglect the uninteresting cases when    a  ,  p      or    Pc 
= 0 

Average packet delay and channel throughput rate 

Consider a stationary control policy    f  : S -* A    uniquely 

specified by the nonintersecting sets    S     , S    > ^   ^    an(i    S        such 1 / c ao      ac      ro re 

that 

5 = S      uS      uS      uS 
ao        ac        ro        re 

and 

ao i r s 
ao 

ac * ac 

ro i c S ro 

re i c. S 
re 

Hi) - aC ^'^ 
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Let 

S = S  u S 
a   ao   ac 

5 = S  u S 
r   ro   re 

(6.43) 

Define the expected immediate (delay) costs to be 

C.Uo) = C.(ac) = i (6.44) 

and 

C, (ro) - C^Crc) « i + (M - i)a.dr (6.45) 

= M 

The cost rate of the process N  under policy f is given by Eq. 

(6.24) 

M 

edCn   Z i ^^ *  dr Z  CM - i)o TT (f) (6.24) 
i=0 ieS 

r 

and the average packet delay (including rejection delay) is given by 

Eq. (6.27) 

gd(f) 
D = gS  ♦ R + 1 (6.27) 

out 

Tu obtain S   , the following expected immediate (throughput) costs 

are adopted. 
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Ci(ao)  s  - Sout(i*  a0) 

(6.46) 

= -[i po(l-po)1"1(l-a)M'1 ♦ (l-poJ1(M-n   a-a)  ■1"1] 

C.(eel  =  - S       fi,   ar) 
i      • out     ' 

(6.47) 

C. (ro)  =   -  S    Ai» TO) i out     *      J 

=  -i p  (I  - p )1"1 (6.48) 
*o r0 

Zi^  -  - Sout(1'  r^ 

=   -i   p   (1   - p  A1
"

1 (6.49) 

ll\e cost  rate of the Markov process  and the stationary channel  through 

put  rate  are again given by 

and 

5 i=0    ' out 

S    ,   -   -g   ff) (6.^01 out fcs 

"Hius , 

nd(n 
gjn 
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6.4 A Theorem on  the  Equivalence  of the  Performance Measures 

The clanneJ   throughput  rate    S and average packet delay    D t i out        ^ i 

constitute the performance measures of interest for the controlled 

channel.  Under anv one of the previously described channel control 

procedures and given a stationary control policy  f , either one of 

the performance measures ca:  " evaluated by appropriate definitions 

of the state transition probabilities and expected immediate costs 

of the Markov decision process N  .  The value-determination opera- 

tion yields the cost rate of N  , from which the value of the per- 

formance measure can be computed.  Given a single performance measure, 

the policv-iteration method will, in fact, lead to an optimal sta- 

tionary policy with respect to  e given performance measure in a 

finite number of steps. 

Under any one of the control procedures, some obvious optimi- 

zation problems seem to be: 

(11   Min D ,      ,       ■ *    c 
f _ P    given some (.ninimum) constraint on S 

s 

(z)   Max S , ^    *   * „ n out given some (maximum) constraint on V 
f £  V 

s 

(3)   Min (D - ß S  )  for some ß > 0 
f ,. P     cu 

s 

where P  is the class of all stationary policies. Markov decision 

theory as introduced in Section 6.2 does not provide for the solution 

of the first two optimizat n problem^ with constraints.  In the thr.'d 

problem, there is nc natural candidate for the positive constant  ß 
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which determines the rela ive weights we put on the two performance 

measures  (D and S  )   .     Luckily, we have been able to establish 
out 

the following lemma and theorem which enable us to get around this 

difficulty. 

Lemma 6.3 Under each of the control procedures ICP, RCP or 

IRCP 

gd(f) = -^— * M (6.50) 

where    f    is any stationary control policy. 

Proof The proof hinges on the observation that under a 

stationary control policy, N is a finite-state MarV v ^-oc ' 

with stationary transition probabilities in which cast. tationary 

channel throughput  rate    S must be equal to the stationary 

channel  input rate. 

We  first  consider the  input  control procedure   (ICP).     From 

Eqs.   (6.21)   and   '6.24) 

M 

gd^  =-■   1   i Vf)  + a    A    (M "  i)ö ^i^3 
i=n ieS r 

M 

= z i ^(^ * ^ X (M ■i)a Tri(f) 

r 

♦ ~    /    fM - Ha 7T. rn - 1    > (M  -   i)a  TT. (f)   -  L      ? (M _ i)a TT. (f) 
ieS 1 a    ifS 1 

a a 
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1 M, 

(M-i)G   TT. (f) 
i=0        x iVo        * -   ieS 1 

a 

■4 2 (M -  i)a TT  (f)  + M 
ieS a 

Note that     ^     (M -  i)a TT. (f)     is  just the stationary channel  input 
izS 1 

a 

rate and is thus equal to the stationary channel throughput rate 

Sout = -h^   ■    Hence' 

and the proof is complete for TCP. 

We next consider the retran:mission control procedure (RCP). 

From Eq. (6.35), 

M 

g.m = ^ i TT en 
d     1=0 

M 

= ^ (i - M) IT. (f) * M 
iA="b      1 

M 

- - -  X (M - i)o TT. ff] + M 
a  1=0 1 
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Again, ^ (M - i)ö ^.(f)  is just the stationary channel input rate 
i=0 1 

and is thus equal to S   = -g (f) ■  Thus, n       out   *s 

gs(n 

and the proof is complete for RCP. 

The proof for IRCP is identical to that for ICP. 

Q.E.D. 

Theorem 6.4 Under each of the control procedures ICP, RCP 

or IRCP, 

(i) there exists a stationary policy f such that 

nun 
gdK J      feP gdv ' 

if and only if 

mm 
Mf) = HP    h«' 

s 

(ii) if f is a stationary policy satisfying the preceding condition, 

then  f minimizes D over the class  P of aU policies and at the 

same ti.ne,  f maximizes S    over the class  P of all policies. 
 out   

Proof  (i) This is a direct consequence of Lemma 6.3 and the 

existence of f is guaranteed by Theorem t .7.   (ii) By las. (6.30) 

and (6.31),  f minimizes  Ü and maximizes  S    over v    '' out 
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the class of all stationary policies.  The Reneralization to the class 

P of all policies is a consequence of Theorem 6.1. Q,l:..l). 

Lemma 6.3 and Theorem 6.4 can be generalized to control pro- 

cedures similar to ICP, RCP and IRCP, but with more alternatives in 

their action spaces.  This is done in Appendix F. 

Summarizing the results in Theorems b.l, 6.2 and 6.4, we state 

that under each of the control procedyres TCP, RCP and IRCP, a sta- 

tionary policy  f : S » A always exists which minimizes the average 

packet delay  D and maximizes the stationary channel throughput 

rate  S    over the class  P of all policie«.  Such an optimal 

control policv and its channel performance nr.easures  D and S 
' out 

can be obtained by applying the policy-iteration method.  In the 

next section, we shall present an efficient computational algorithm 

which utilizer the policy-iteration method. 

An interpretation of Theoiem 6.4 and the optimization problem 

The average packet delay D  is given by F.q. (6.31) as 

gd(f) 
D = - ",  ♦ R + 1 (6.31) 

where  f is a stationary control policy in any of the above control 

procedures.  Applying Eqs. (6.30) and ().S0) to substitute for 

j' (f)  and  g (f)  in the above equation, we have 

D = R ♦ 1 ♦( ~- - ~ \ (6.51) 

16 



which relates    D    as a one-to-one  function of    S given fixed 
out & 

values of R , M and o .  (Note that the last two variables deter- 

mine the channel load line.) Moreover, this function is monotonically 

decreasing. 

Assuming a fixed R , we show in Fig. 6-6 a family of curves 

each of which departs D as a function of S    given by Eq. (6.51), 

The parameters M and a , which aetermine the channel load line, 

also define a curve in th^ two-dimensional space of the performance 

measures D and S   .  We may consider each one of the control 
out       ' 

procedures in Section 6.3 as a mathematical operator which maps P 

(the space of all stationary policies) into the above curvfe.  Hach 

f in P  is mapped into one point on the curve.  The range space 

of the operator must be a proper sul>set of points on the curve. 

Otherwise, it is possible that Ü = R + 1  and S   = Ma  (i.e., no r out 

congestion at all!). The optimization problem thus coiresponds to 

finding the extreme points (maximum S    and minjmum D ) of the 0 r out 

range space.  Since the curve under consideration is monotonically 

decreasing, these extreme points coincide.  Thus, the same control 

policy f must maximize S    and minimize  0 at the same time. 
out 

Given a family of channel lo-d lines (e.g.,  M varying from 

0 to « at fixed a or a varying from 0 to 1 at fixed M) each channel 

control procedure gives rise to an infeasible region such as shown 

in Fig. 6-6.  The boundary of this region represents 'he optimum 

throughput-delay tradeoff under the above constraints.  The optimi- 

zation problem here is to find the optimal contra policies which 
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R + 1 

^out 

rigure 6-6.       Optimum Performance of a Channel Control Procedure. 
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achieve this optimum channel performance.  Below we give a computa- 

tional algorithm to do so. 

6.5   An Efficient Computational Algorithm (POLITE) 

In any optimization problem, the optimum solution is readil) 

available if we can enumerate all possible solutions.  Thus, an 

optimization problem is solvable in the sense that the task of 

enumerating the set of possible solutions is within the limits of the 

computing capability of our mavJune(s).  Even when a problem is 

solvable, we must look for ways to reduce the computational cost in 

terms of the time and space allocation of our machine(s) to the 

problem. 

For the problem at hand, we have seen the tremendous savings 

in computational cost by reducing the set of possible solutions from 

the class of all policies to the class of stationär policies.  Still, 

we have not altogether escaped from the "curse of dimensionality" 

since, for example, if .S has 300 states and A has two actions, 

there are still 2'   (an astronomical number) stationary policies 

to consider.  Howard's policy-iteration method described in Section 

b.2.3 enables us to find an optimal policy usually in a small number 

of iterations-  The method is composed of two parts as shown in Fig. 

6-1, the value-determination operation and the policy-improvement 

routine.  The difficulty now arises in the solution ot the  (M ♦ 1) 

linear simultaneous equations in Eqs. (6.10) for g and the relative 

values of v.  (setting v = 0) when M Is large (say, a few 

hundred, which is our range of interest). 
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M 

g  +  v    =  C    +   2   Pn   vs i   =  0,   1,   2.   ...   M (6.10) 
1 j=o      •     J 

For example,   if    M =  -rOO  ,   the task  to solve F.qs.   (6.10)   is somewhat 

equivalent  to inverting a 401  x 401  matrix with  160,801  entries! 

The  fact that the state transition probabilities    p..  = 0    for 

J   <  i   -  2     in  all  our models  enables us  to decompose the     (M +  1) 

linear simultaneous  equations  in Eqs.   (6.10)   into two sets o^    M 

linear simultaneous equations,  each of which can then be solved by 

applying Algorithm 5.1.     We summarize the procedure  in the  followi,.^ 

algorithm, which plays  a crucial  role in making possible  the use of 

the policy-iteration method to solve optimization problems  involving 

hundreds of channel users.     Its derivation  is given  in Appendix E. 

Algorithm 6.5 

This  algorithm . olves  for    g    and    (v.).   ,   in the following 

set  of    (M +  1}     linear si^uKaneous equations, 

M 

i = l      -    J 

g +   v 

M v 
= C    +    /    r      v 

(6.52) 

M 

g +  v.   = C. 
B       1       1 

1 
. 4- Pii vj     i -2-3 rt 

1=1-1      '    J 

where 

I   PQJ  
B     1    Pij  =  1 i  =  1»   2,   ...,   M 

j=0    UJ       j=i-l     lj 
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(1)   Define 

M-1  p 
1 

M,M-1 

C 
M 

M-l    p M,M-1 

(2)   For i = M - 1, M - 2, ..., 2 solve recursively 

b. 
i"1  Pi.i-1 

M-l 

). + 1 - / p. . b. 

d. 
i"1  Pi.i-i 

M-l 

d. - C - A P- ■ d- 1 

(3)   Define 

"M
0
  p 

1_ 

10 
bj + 1 • 

M    p 
1_ 

10 

/  PT b 

M-l 

ll - Cl - S Plj dj 

ui = "M ^ bi 
1=1,2, ..., M - 1 

w. - w. + d. 
i   M   i 
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(4)   Let 

M 

8 =  JM 

- I Po, ^ 

v. = u g + w. i = 1, 2, ..., M 
i   i 6   i 

Algorithm 6.5 has the same advantages as Algorithm 5.1 (which 

it utilizes) discussed in Section 5.3.1.  Briefly, they are: 

(1)  The crucial variables b.  and d.  in the algorithm are com- 

puted recursively such that the state transitren probabilities p.. 

can be computed as needed. This eliminates the need for storing 

the -^- ~  + M elements in the state transition matrix and 

virtually eliminates any machine storage constraint on the dimension- 

ality of the optimization problem. 

(21 The number of arithmetic operations required is also 

smaller than that of a standard solution method such zs  Gauss 

elimination [CRAI 64]. 

These considerations render the policy-iteration method a very 

efficient tool in the solution of our optimization problem. 

We give below an algorithm (called POLITI-) which combines 

the POLicy-ITFration method, Algorithm 6.5 and Theorem 6.4.  Given 

a Markov decision process model of the channel, POLITE finds the op- 

timal control policy and evaluates the optimum ch-innel perforrr mce 

measures. 
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Algorit.;.n 6.6 (POLITE) 

Given the Markov decision process N  with 

state space S = {0, 1, 2, ..., M}, 

finite action space A (ICP, RCP or IRCP), 

throughput or delay costs {C.(a) | i e S , a e A }, 

state transition probabilities (p.,(a) | i, j e S , a e A , 

p..(a) = 0 if j $ i - 2), 

and stationary policies f : S -^ A . 

To dotermine a stationary policy f  such that the cost rate g of 

N  is minimized. 

Start at either step (1) or step (2). 

(1) Given a policy f , ap^    gorithm 6.5 to obtain g and 

M 
{v.}.   ,   ; p..(f)    and    C. ^f)     are computed when need in 

Algorithm 6.5. 

(2) Given a set of    {vj1^   ,   for state    i = 0,  1,   ...» M    define 

the test quantity 

M 

Cost(i,  a)  = C.Ca)  +   A  p^WVj (6.53) 

Find a such that Cost(i, a) =  J Cost(i, a). 

If Co3t(i, f(i)) = Cost(i, ä) , then let f(i) = f(i) ; other- 

wise, let f(i) = ä . 

(3) If f and f are identical, go to step (5). 

(4) Replace f by f and go to step (1). 

(5) £ ■ f is an optimal control policy. 

(6) g = g (f )  or g.(f )  depending on the expected immediate 

costs C.(a). 
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Mn s 

(7) The optimuir. performance measures  are, 

Sout  =   -  h^ 

D    =  - ——i-   + R +  1 

gs(f ) 

6. 6   I-valuation of Control Procedures by POLITE 

6.6.1 Computational Costs and Convergence 

The POLITL; algorithm is our tool for computing optimal control 

policies and evaluating performance measures of the controlled channel 

using ICF, RCP or IRCP.  The algorithm has been coded in Fortran and 

runs on the IBM 360/91 of the UCLA Campus Computing Network (CCN).  For 

the numerical examples we considered, which will be given in the fol- 

lowing sections, t:he core memory requirement is less than 90K bytes 

and the job CPU time for each run is between 1 to 6 seconds.  (Double 

precision is used,  M is up to 508 and the number of algorithm 

iterations  is in all cases less than 5.) These numbers rranslate to 

less than one dollar per run on the average at the current CCN charge 

rate and are very reasonable considering the size of the problems 

involved.  For comparison, consider the following example.  If M = 400, 

the state transition matrix  [p..)  alone has ——i—J- ♦ 400 = 81001 

nonzero entries and requires 649K bytes of memory to store it in 

double precision. 

By an iteration of the algorithm POLITE, wr mean a complete cy« le of 
steps (1) to (4; in tne algorithm. 
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No conscious effort has been made to optimir.e the program code 

except for the following options.  First, in step [2)   of POLITE, when 

Cost(i, ffi))  and CostCi, a)  are compared, they are assumed to be 

equal if Cost(i, a)  is within 1 ± e of Cost(i, f(i)) .  In all 

our numerical computations,  E is taken tu be 10 ' .  Second, to pre- 

vent the occurrence of "underflows" during program execution, some 

threshold must be specified in the program so that whenever a number 

is less than the threshold it is put equal to zero.  For our purpos. , 

the threshold value is taken to be 10   (instead of the possible 

10   in ehe IBM 360/91) to save some compulsions.  Smaller threshold 

values have been used to recompute se/eral cases.  No discrepancy 

in the program output values is observed. 

In applying POLITE to solve the ICP and RCP optimization 

problems, we adopt the following strategy.  A control limit polity is 

always used as the initial control policy to start the algorithm at 

step (1). This control limit is chosen somewhere between the operating 

point n  on the channel load line and the unstable equilibrium 

point n  (see Fig. 5-6(b)}.  Under such an initial control policy, 

the algorithm requires in most cases between 2 to 4 iterations to 

arrive at the optimal control policy (algorithm termination). 

Although our optimization problem can now be solved by FOLITE 

with relatively small time-space demands on the computer, there exists 

another constraint which bounds the dimensionality of our problem--thc 

precision of numbers in the computer.  When M is large and/or A has 

many elements, we need to distinguish numbers which are so close 
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together that they are ao longer distinguishable given the precision 

of the computer.  Furthermore, increases in the number of recursive 

steps within the algorithm produce bigger round-off errors, the effect 

of which is becoming more pronounced.  We found that for a value of 

M  larger than 500, the program may not converge  if the initial 

control  policy is not close to the optimal policy.  This is (probably) 

caused by the accumulation of round-off errors as the algorithm re- 

quires mor^ iterations for an initial policy which is farther away 

from the optimal policy. 

6.6.2  "Optimality" of the Control Limit Policy 

Consider TCP and RCP.  The action space A of both control 

procedures consists of two actions  (a , a } .  a  is the operating 1 o  c     o       -t fc- 

action, designed to give good channel throughput-delay performance 

conditioning on equilibrium conditions,  a  corresponds to ' ir.cept" 

in ICP cind p  (or K ) in RCP.  a  is the control action, designed 

to prevent the channel from going into saturation,  a  corresponds 

to "reject" in ICP and p  (or K 1 in RCP. rc      c 

Our intuition suggests that a good control policy (for either 

TCP or RCP) must be such that the control action should be applied 

whenever the channel backlog size N  exceeds some threshold value 

to prevent it from drifting toward saturation.  But as soon as N 

decreases below this threshold value, the conLrc ■ action should be 

In our computations, each application of POLITE is allowed a maximum 
of 5 iterations, after which the program stops.  Remember that the 
algorithm is guaranteed to terminate by Theorem 5.2.  The difficulty 
here stems from machine limitations rather than the algorithm itself. 
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replaced by the operating action, since its use costs the System much 

more in terms of both channel throughput and packet delay. This in- 

tuition has been confirmed in all our numerical computations for ICP 

und RCP.  In each case, the optimal control policy given by POLITE is 

a control limit policy of the following form. 

f (i) = 

a        i s n 
0 (6.54) 

a        i > n 
c 

where n is said to be the control limit (CL) of the control limit 

policy f . 

A rigorous mathematical proof of the optimality of the control 

limit policy remains an open problem.  In many problems characterized 

by optimal policies of the CL type, the usual method of attack in 

their proof is to demonstrate monotonicity for the sequences  (v.) 

and {Cost^i, a ) - Cost (i, a )} .  The lack of monotonicy in 
o c 

most such sequences is clearly seen in Figs. 6-7 to 6-10. These 

figures also serve to illustrate some of the steps of the algorithm 

POLITE. 

An ICP example is shown in Figs. 6-7 and 6-8 where the sequences 

(Costfi, a) - CostCi, r)} and (v.) have been plotted as functions 

of i .  Delay costs corresponding to Eqs. (6.22) anj (6.23) are 

assumed.  Each curve in these figures is obtained using the control 

policy generated during the previous iteration of the algorithm.  Con- 

sider Fig. 6-7.  The initial control policy is a control limit policy 

with n = 40 (which interestingly corresponds to the ioining point of 
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the two humps of the first iteration curve).  The fii-st Jtcration 

curve crosses zero exactly once between  i = 14  and \   ^ 15 .  Thus, 

n = 14 becomes the control policy for the second iteration.  (Recall 

step (2) in POLITE.)  The second iteration curve yields the control 

policy n = 23.  Finally, tn? optimal control policy  in = 221  is 

obtained in both the third and fourth iterations and the algoiithm 

terminates.  In Fip. 6-8, the relative values  v.  in each iteration 

are shown.  We see that v.  is monotonicalIv increasing in  i .  This 

implies that the expected total cost in del ay(over a finite time 

horizon) increases as a function of the channel state  i  at time 

zero (see Hq. (6.7)). 

A RCP example is shown in Figs. 6-9 and 6-10.  Throughput costs 

corresponding to F.qs. (6.36) and (6.37) are assumed (which explains 

the negative values in Fig. 6-10).  Note that the algorithm terminates 

in only three iterations. 

Observe in Figs. 6-7 and 6-9 that when the initial control 

policy for POLITE is a CL policy, not only is the final optimal 

policy a CL policy, but all intermediate control policies generated 

by POLITF are of the control limit type.  To test if POLITE generates 

CL policies only when a CL policy is fed into the algorithm as the 

initial policy, we tried the following.  Let  0 = m < m < ... < m = M. 

Define the control policy 

f'(i) = , 

i = 0 or m. < i ^ m. , , i  is odd 

m. < i < m. , , i  is even 
1       j + 1  ■ 
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Such a control policy was used as the initial policy to drive the 

algorith"! POLITE in several cases.  In each case, the same CL policy 

as before was generated by POLITE to be the optimal policy. 

6.6,3 Channel Performance 

We show in this section throughput-delay performances of the 

controlled channel using ICP, RCP -r IRCP. 

Given an unstable channel load line, the throughput-delay per- 

formance at the operating point  (n , S )  is what we strive to achieve 

through dynamic channel control. Thus, it is essential that the opera- 

ting value of K gives an operating point (n , S ) close to the 

optimum.  In Figs. 3-4 to 3-5, we see that  K = 10 is an excellent 

choice and will be used throughout this chapter as the operating 

value of K .  The channel load line is a straight line uniquely 

specified by its intercept on th^ vertical axis, M , and its slope - — . 

However, often we would prefer to specify the load line by specifying 

M and the operating point  (n , S )  on the equilibrium contour 

( nstead of a ).  Thus, different load lines specified by the same 

channel operating point can be comprred by showing how well thev 

approach the throughput-delay performance at the operating point. 

The equilibrium contour corresponding to K = 1C  is shown in 

Fig. 5-3.  Each channel load line to be used in our computations 

will be specified by M and one other point on the  (n,S) plane. 

The points si   , in Table 6.1 will be used. 
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n    = 
o 1 2 3 4 5 7 10 

S    = 
0 

0.2 0.25 0.3 0.32 0.34 0.36 0.374 

Table 6.1  Points on the  K = 10 contour. 

(Note that these points only approximate points on the K = 10 contour. 

For example, given SQ  = 0.32,  no given by the  K = 10 contour is ac- 

tually between 3 and 4, but has been rounded off to 4 for convenience.) 

In pa-ticular, the points  (no, So) = (4, 0.32)  and (7, 0.36) will be 

u«;.?d in most of our examples.  Assuming a large M , these points cor- 

respond U a channel which is moderately to very heavily "loaded" when 

the prcVU.-ns of channel instability and channel control become 

significart.. 

From oui discussion in the last section, all control policies 

considered beiow fur ICP and RCP are of the CL typo. 

Ir ICP tH contro.» action is to reject all new packet arrivals. 

In RCP the control action is to use a large enough value of K = K 

which renders the channel load line stable. We illustrate this last 

statement in Fig. 6-11.  The iverage packet delay D given by an op- 

timal RCP control policy is shown as a function of K  .  Note that  K 
c c 

somewhat less than the necessary value of K to render the channel load 

line stable can be used.  However, if K  is too small, the channel per- 

formance "bljws up" since now the controlled channel is still unstable. 

Observe chat for a sufficiently large  K  ,  D is quite insensitive to 

its exact value except when S = 0.3C, in which case D increases 

slowly with Kc .  Note that for the same S  , a much larger K  is 
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required for a larger M .  In the limit as M->■ «> . RCP becomes in- 

effective since no sufficiently large value of K can be used for K 

Knowing that the optimal control policy is a CL policy wc 

show in Figs. ö-12 to 6-15, the channel performance measures S B I out 

and D  (given by ICP and RCP for M = 200,400 and S - 0.32, 0.36) 

over a range of control limits. Observe that the sajp.e control limit 

minimizes D and maximizes S    at. the same time as predicted by 
out 

Theorem 6.4.  Note the amazing flatness of S    and 1) near the & out 

optimum point, ^specially when S =0.32 and M - 200 in Figs. 

6-12 and 6-13. The consequence is that even if a nonoptimal control 

policy is used (due to, ior example, not knowing the exact current 

backlog size such as in most practical systems), it is still possible 

to achieve a throughput-delay performance close to the optimum. 

However, such flatness of S    and D is not as pronounced when 
out 

S  is 0.36.  Ccnpaiing the four figures, we see that the optimum 

values of S    and D givei by ICP and RCP art approximately the 
out        & rr 

same, but RCP gives less severe degradation in channel performance 

with control limits much smaller and much larger than the optimal. 

However, recall from Fig. 6-11 the potential disastrous channel 

behavior if K  is not sufficiently large. This r.ust be taken into 
c 

consideration in any system design using RCP since in a practical 

system both the parameters M and a may change with time.  To 

provide the necessary design safety margin, a much bigger value of 

K  than deemed necessary may have to be adopted  In Fig. 6-13, we 

show the degradation in channel perfcrmance when K = 200 is used 

instead of K = 60 .  (The use of K = 200 allows the channel to 
c        v c 

support more t'ian 400 users instead of 200.)  On the other hand,  M 
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has relatively little effect on the optimal TCP control limit as 

shown in Fig. 6-16(a). Thus, even if M fluctuates in time in u 

real system, the same ICV  control limit policy is still optimal. Of 

course, the optimum channel performance must deteriorate as M in- 

creases as shown In Fig. 6-16(b). We see also in Fig, ^-16(a) that 

in the case of RCP, as M (and hence, K )  increases, the optimal 

RCP control limit increases.  In Fig. 6-16(b), the optimum D given 

by ICP and RCP are compared.  RCP is found to be slightly better than 

ICP. However, as M becomes large, K  must also be large, in which 

case the trend indicates that ICP is superior to RCP. 

We mentioned earlier that for a value of M larger than 500, 

we run into difficulties with round-off errors such that using POLITE, 

the optimal control policy can be found ^nly when it is close to 

the initial control policy. We see here that for a very large M, 

ICP is superior to RCP. The ICP optimal control limit is also insens- 

itive to M and thu.s, the same control limit may be used even when M 

becomes very la* ge. 

In Figs. 6-12 to 6-15, we have also indicated simulation 

results for throughput and delay.  Throughput results are shown in 

Vig.   6-12 only and omitted in the other three figuics (but they 

agree as well with the analytic results as shown in Fig. 6-12).  In 

these simulations, channel control policies are applied assuming 

that the exact channel backlog size N  is known to all channel 

For both S = 0.32, 0.36 and corresponding to M = 100, 150. 200, 

250, 300 and 400, we let K = 20, 40, 60, 80, 100, 150 respectively. 
c 
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users.  However, contrary to the mathematical model, each collided 

packet is assumed to suffer a fixed delay R and its retransmission 

to be randomized uniformly over the next  K slots.  The mathematical 

model is idealized since R is assumed to be zero while each back- 

logged packet retransmits in a time slot with probability 

P = 'D   rv  i w) •  (^n both cases, the average retransmission delay is 

the same.)  This approximation was oaT^ned in Section 5.1 for an un- 

controlled channel a^.d found to be very good under the assumption of 

channel equilibrium.  The excellent agreement between the simulation 

and analytic results presented here demonstrates that this approxima- 

tion is good even for a dynamically controlled channel.  The duration 

of each simulation run was taken to be 30,000 time slots.  The reason 

for using such a long duration is that in those cases when the control 

limit n is large or when S  is relatively small, such as 0.32, 

N  may exceed n only once in a long time.  If such time periods 

are large compared to the duration of a run, the simulation results 

wili not be accurate since we are trying to determine ehe average 

value of a random quantity using only a small number of samples. 

Optimum throughput-delay tradeoffs 

Given a channel control procedure, we consider here the 

optimum throughput-delay tradeoff corresponding to the boundary of 

the infeasible region in rig. 6-6.  In Fig. 6-17, given M = 40Ü 

and a fixed a , we see that  S    is maximized and  H mini mi zee! 
out 

by the optimal  control   limit     w   ~  22   .     With  a  fixed    M   ,   the  op- 

timum t'.iroughput-delay tradeoff curve   is  obtained by  increasing    o 
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from zero and for each value of c   ,  finding the ontimal CL and eval- 

uating the optimum channel performance through application of POM'IT. 

Such optimum throughput-delay tradeoffs at fixed values of M are 

shown in Figs. 6-17 and 6-18 for ICP and RCP respectively.  Also 3hown 

in these figures is the optimum performance envelope of the infinite 

population model given in Chapter 3. Note how close the ICP and RCP 

throughput-delay tradeoff curves are to the optimum envelope.  In 

fact, the M = 50 tradeoff curve lies a little below the optimum 

envelope.  This is to be expected since M = 50 actually gives rise 

to a stable channel, in which case the channel performance at the 

operating point is achieved. Note that these two curves are ob- 

tained from two different analytic models based upon different 

approximations, namely, the first order approximation model in 

Chapter 3 and the linear feedback model in Chapter 5.  It is com- 

forting to see that the two different approximations lead to such 

close results. 

In Figs. 6-19 and 6-20, we show optimum throughput-delay 

tradeoffs at fixed values of a    for ICP and RCP respectively. 

( — is the average think time of a channel user.)  In this case, 

increasing 3    corresponds to increasing M , that is, admitting 

more channel users.  We see that the channel performance improves 

as the packet generation probability a increases, since this implies 

that for the >ame S   , the number of channel users M is smaller. 
out 

We considered average think times of 10-30 seconds (see Section 5.1.2). 

User populations with smaller average think times will probably give 
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rise to a stable channel, since M must JC smaller in this case. 

Tradeoff curves for larger average think times can be generated by 

the algorithm POLITE if necessary. 

Comparing TCP and RCP in the last four figures, ws see that 

they give rise to almost the same throughput-del ov tradeoffs. r,CP 

is slightly better thar TCP except when M or - ii large (e.g., 

M > 400 or - = 30 seconds). 
a 

IRCP channel performance 

Recall that the TCP and RCP action spaces are both subspaces 

of the IRCP action space. Therefore, the channel perforir.ance given 

by IRCP must be better or at least as good as that given by ICP or 

RCP. This has been verified in all cases we considered. However, 

in each case, the differences in S    and D among these three 
* out ö 

channel control procedures are small as shown in Table 6.2 for the 

four cases . living M = 200, 400 and (n , sj = (4, 0.32), (7, 0.36). 

Observe that in every instance, IRCP gives the best performance, but 

only by a very slim margin. Note also that the optimal policy for 

IRCP is of the form 

f(i) = 

ao     0 i i < n 

ac     n < i 15 n2 (6.55) 

re     n- < i 

which is uniquely specified by  (n , n ).  This is similar to a 

"concatenation" of RCP and ICP control limits!  In fact, n  is eithei 

equal or very close to the optimal RCP control limit in each case and 
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M = 200 

S = 0,32 

(Kc = 60) 

M = 200 

S = 0.36 

(Kc = 60) 

M = 400 

S =0.32 
0 
(K = 150) 

c 

M = 400 

S «0.^6 

(Kc = 150) 

n ICP 22 18 22 18    ! 

n RCP 18          17 /3 22    i 

Cnj, n2) I RCP (18, 56) 17, 43) (.'5. 116) (23, 91) 

S ^ 
j   out 

ICP 0.31778 0.5492S C.31807 0.34846 

RCP 0.31817 0.35217 0.3184^ Ü.34715  1 

I RCP O./ilSl7 0.^219 0.31844 0.34847 

49.5S2 

D 

TCP 29.857 

mm 

33.096 69.237 

RCP 29.085 44.802 31.608 
1 

73.588  ! 

I RCP 29.06ü 44.772 
i 1 

31,608 
i  

69.215 

Table 6.2 Comparison of ICP, RCP and IRCP. 

the use of n2 brings about only miner improvement in the channel 

performance except in the case of M = 400 and S = 0.36 . We shall 

also refer to n  and n^ as control limits. 

6.7   Practical Control Schemes 

The optimal throughput-delay channel performance given in the 

last section is achievable over an infinite time '.orizon if the channel 

users have exact knowledge of the channel state at any time.  In a 

practical system, tho channel user^ often have nj  means of communication 
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amonjj themselves other than the multi-access broadcast channel itself. 

Each channel user must individually estimate the channel state by 

observing the outcome in each channel slot. Moreover, whatever channel 

state information available to the channel users is at least one 

round-trip propagation delay .old and may introduce additional errors 

in the users' estimates if R is large (such as in a satellite chan- 

nel).  Thus, the control action applied based upon an estimate of 

the channel state IT ay not necessarily be the optimal one at that time, 

which then will lead to some degradation in channel performance. 

Below we first give a procedure for estimating the channel 

state assuming that the history (i.e., empty slots, successful trans- 

missions or collisirns) of the channel i- available to all channel 

users. The optimal ICP. RCP and IRCP control policies wil1 be applied 

based upon the above estimate. A heuristic control procedure is then 

proposed which circumvents the state estimation problem.  These control 

procedures are examined through, simulations and compared with the 

optimal throughput-delay results in the previous section. The ability 

of these control procedures to handle time-varying inputs (with pulses) 

is also examined. Two other control procedures will then be dis- 

cussed and some channel design considerations given. 

6.7.1  Channel Control-Estimation Algorithms (CONTEST) 

Our heuristic procedure for estimating the channel state is 

based ^pon the observation that the channel traffic in a tim». slot is 

approximately Poisson distributed (see Chapter 4 and Appendix A). 

Below we present algorithms whi/n implement channel control procedures 
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studied in the previous sections using the estimated channel state. 

These channel CONTrol-FSTimation algorithms will be referred to as 

CONTEST algorithms. 

CONTEST algorithms 

We give here a proceuure for implementing RCP. As before, we 

let K  be the operating value and K  be the control value of K . o r c 

Suppose n is the RCP control limit sach that the channel users 

switch their retransmission K value from K  to K  when the 
o      c 

channel backlog size exceeds n and from K  to K  as soon as o 

the channel backlog size dro^s below n . We let 

G = n p ♦ (M - n)o (6.56) 

where from Hq. (5.3) 

 1_  
Po " R + (K ♦ 1)72 

We also define 

G = n p + (M - n)a (6.57) 
c     c 

where 

1  
Pc s: R * (K * l)/2 c 

G  and G  are thus the averaec channel traffic raues given that 
o       c B 

the channel backlog size is n packets with K equal to K  and K 
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respectively.     Assuming that  the  channel  traffic   is  approximately 

I'oisson 'listnbuted,  v.e define  the  following critical   values   (cor- 

responding to the probability of zero channel  traffic   in  a time slot), 

-G 
> o t    = e o 

(6.58) 

and 

-G 
f    =  e c 

(6.59) 

Since    K   >   K      we must have c        o 

f    <   f o        c 

Suppose each channel user keeps track of the channel history 

(one round-trip propagation delay ago) within a window frame of W 

■st slots  as shown  in  Fig.   6-21.     Let     f      be the  fraction  of empty  slots 

th 
in the W slots within the history window for the t  time slot. 

-vt f      will  closely  approximate the probability of zero channel   traffic 

HISTORY WINDOW 
FOR THE tth SLOT 

W SLOTS 

P SLOTS 

tth SLOT 

I    i    I   i   M    I   I   I   I   (   M   t    I   I   1    I   I    i 

CHANNEL 
TIME 

Fiyure 6-21.     The Channel History Window at Time t. 
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in the t  time slot provided that the channel traffic probability 

distribution does not chanpe appreciably in (W + R) time slots and 

the Poisson traffic assumption hoUls.  We give  the following CONTtöT 

algorithm to be adopted by each channel user.  Let d  be the control 

decision at time t . 

Algorithm 6.7 (RCP-CONTEST) 

This algorithm generates the decision d = K , K  at each 

time point based upci the channel st^e estimate f  and the RCP 

control limit n . Start at step (1) or step (4). 

(1) t - t ♦ 1 

d1 = K 
o 

(2) If f1 < fo , go to (4) 

(3) Go to (1) 

(4) t *- t + 1 

dt . K 
c 

(5) If f1 - fc , go to (1) 

(6) Go to (1) 

Next we consider a similar implementation for ICP.  In ICP, 

the cont ol actions are (accept, reject} . Suppose n is the ICP 

control limit such that the channel always rejects new packet arrivals 

when the current backlog size exceeds n and always accepts new 

packets when the current backlog size is less than or equal to n . 

We let 

G » n p ♦ (M - n)o (6.60) 
3 
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and 

ä   /\ 

G = n p (O.bl) 
r    r 

where 

1 
P = R * (K ^ l)/2 

G  and G  are the average channel traffic rates given that 

the channel backlog size is n packets with the current decision = 

accept, reject respectivriy.  Again assuming a Poisson channel traffic, 

we define the following critical values (corresponding to the proba- 

bility of zero channel traffic in a time slot), 

-g 
f = e  * (6.62) 
a 

-Gr £p = e 
r (6.63) 

Since G > G  , we must have 
a   r 

f < f 
a   r 

Algorithm 6.8 (TCP-CONTEST) 

t 
This algorithm generates the decision d = accept, reject at 

time t , based upon the channel state estimate f  and ICP control 

limit n .  Start at step (1) or step (4). 

(1)   t - t ■ 1 

d = accept 
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(2) If r < f  go to (4) 

(3) Go to (1) 

(4) t *- t ♦ 1 

d = reject 

(5) If f* > f  go to (1) 

(6) Go to (4) 

To implement IRCP, we assume that the control policy is of the 

form given in F-q. (6.55) such that it is uniquely specified by the 

control limits n.  and n-, . To be consistent with this assumption, 

we shall distinguish only three decision states: ao, ac and re. We 
A A A 

define f  and f  by using n in Eqs. (6.56)-(6.59),  f ^ and 
o      c 1 ac 

f   by using nn and p  in F:,qs. (6.60)-(6.63), and f   by using 
re — c ao 

n0 and p  in Eqs. (6.60) and (6.62).  Since P0 
> Pc 

s a ^ 

rL > n, , we have f  < f  and f  < f . 2   1 ao   o      ac   c 

Algorithm 6.9 (IRCP-CONTEST) 

This algorithm generates the decision d = ao, ac, re at 

time t based upon the channel state estimate f  and IRCP control 

policy  (n , fL).  Start at step (1), (4), or (7). 

(1) t *■ t *  I 

d ^ ao 

(2) If ft < f  go to C7) 
ao 

otherwise, if f < f  go to (4) 

(3) go to  (1) 

(4J t *• t ♦  1 

dl   = ac 
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es)     if r > fc go to (i) 

otherwise, if f < f  go to (7) 

(6) go to (4) 

(7) t *• t ♦ 1 

.t 
d = re 

(8) If f* > frc go to (4) 

(9) go to (7) 

The channel history window 

The size W of the charrel history window kept *  each channel 

user is ver> important for successful channel state estinuMon.  If 

W is too large, we may lose information on the dynamic behavior of 

the channel such that the necessary actions are taken belc?:edly.  If 

W is too small, we lay get large errors in approximating the proba- 

bility of zero channel traffic by the fraction of empty slots in the 

history window.  A good initial estimate is that W should be 

bigger than R and of the same order of magnitude.  Below we compare 

simulation results on channel performance for different values of W . 

To implement the channel state estimation procedure, each 

channel user needs to maintain the channel history for W slots. 

Since it is only necessary to record whether or not a slot is empty, 

W bits of information suffice.  A possible implementation is de- 

picted schematically in Fig. 6-22. The bit string stored in the 

shift register represents the channe1 history in a window of W 

slots.  An empty channel slot is represented by M' while a nonempty 
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channel   slot   is   represented \n   '0'.     In  the   figure,   the  circle  re- 

presents   a summer,   the  triangle  an  attenuator  and the  square  a unit 

de lav  of one  slot. 

CHANNEL 
OBSERVATION 
0OR 1 

Oj 1    10   10   0   0   1 

SHIFT REGISTER 
(WBITS) 

t 

UNIT 
DELAY 

Figure 6-22.     Determination of f It 

Simulation results on the channel performance given by the 

CONTEST algorithms will be examined below in Section 6.7.3. 

6.7.2 Another Retransmission C'ont ro 1 Procedure 

We describe in this section a simple heuristic control pro- 

cedure which has the property that when the channel traffic increases 

the retransmission delays of backloggcd packets will also increase. 

Hence, it will be referred to as the heuristic retransmission control 

procedure [Heuristic RCP).  The advantage of such a control procedure 

is that it is simple and can be implemented easily without any need 

for monitoring the channel history and estimating the channel state. 

in the next section, this and the above CONTEST algorithms will !r 

compared through simulations. 
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The Control Scheme 

For a backlogged packet with m previous channel 
* 

collisions, the uniform retransmission randomization in- 

terval is taken to be K = K  where K  is a monotone 
m        m 

nondecreasing function in m . 

When the channel traffic increases, the probability of channel 

collision increases.  As a result, the "effective" value of K in- 

creases.  If K  is a steep enough function in m , we see that 

channel saturation will be prevented. An effective value of K can 

be defined only with respect to a specific performance measure (e.g., 

average packet aelay).  To illustrate the effect of the function K , 

we derive below the average value of K as a function of q (the 

probability of succetiful transmission).  Let 

r. = Prob[a pLcket retransmits i times before 

success] 

= (1 - q)1 q       i * 1 

Case 1      K = KL for m ;> 2 and Yn >  K. 
        m   z z        i 

K « average value of K 

q i.l - m=l 

Note that the same control scheme can be extended to geometric re- 
transmission randomization by letting p - p  where p  is a monotone 
nonincrcasing functi ^n. 
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00 

V 
i - q ^ (1 ■q- n -t * -T- h 

• K2  + V^     (K2   "  KP l6-64) 

which is  equal  to    K.     at    q =  1    and  increases  to    K      as    q    de- 

creases  to zero; In is the natural   logarithm function. 

Case 2 K    =  K_    for    m ;> 3    and    K    >  K    >   K, 

00 i 
■   K 1    y     y K

m = r^ A ri  A - ''    i-l    -    m=l 

OP j 

1 V   „ 1      I   Kl K2 i - 2    „ 
M     1-2 \ 

Ml   -  q)   q K1 

=  K3 ♦   (K3  -  K2)   q . i^    (2K3   -  K1   -   ^ (6.65) 

which is equal to K  at q = 1  and increases to  K  as q de- 

creases to zero. 

Case 3      K = m K      m > 1 
        m 

1 - q .-*-;  1  ^  1 M  3 = 1    m= 1 
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00 

S   (1 - cQ* i. 1 - ^ i. i     1      nTl 

K     K (6.66) 

2 li  q; 

which is equal to K at q = 1 and increases to infinity as q 

decreases to zero. 

The above results indicate that the average value of K be- 

haves in the desired manner, namely, K increases as q decreases 

due to an increasing channel traffic. This behavior is similar to 

that of the retransmission control procedure. That is why the above 

procedure is called Heuristi: RCP.  Below we examine the CONTEST 

algorithms and Heuristic RCP through simulations. 

6.7.3 Simulation Results 

We summarize in Tables 6.3-6.6, throughput-delay results for 

the following channel load lines, 

(1) M = 200. (n , So)  = (4, 0.32) 

(2) M - 400, (n , So) = (4, 0.32) 

(3) M = 200, (no, So) = (7, 0.36) 

(4) M = 400, (no, So) = (7, 0.36) 

In all cases,  K  is equal to 10.  K  is taken to be 60 and ISO for 
o «- 

M equal to 200 and 400 respectively.  Included in these tables are 

(a) optimum POLITE results for 1CP, RCP and IRCP. fbl sinulation 

results for ICP and RCP using optimal control policies ind under the 

assumption of perfect channel state information, (c) simulation results 
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for the CONTEST algorithms using ICP and RCP optimal control policies, 

and (d) simulation results for Heuristic RCP.  Each simulation run is 

identified by the seed supplied to the random number generator. The 

duration of each simulation run was taken to be 30,000 time slots. 

IRCP was not tested by simulation s'ince the optimal value of fL  is 

in all cases so large that within the simulation duration, the channel 

state N  (almost surely) will not exceed it; the control procedure 

becomes effectively RCP specified by n  . 

The TCP-CONTEST algorithm was tested with channel history 

window sizes of 20, 40, 60 and 80 time slots.  We see from Tables 

6.3-6.6 that W = 40 appears to give the best throughput-delay 

results.  Note that for R = 12 and K = K = 10 , W = 40 is o 

approximately twice    R + K  . 

The RCP-CONTEST algorithm was  also tested with various values 

of    W .     In this case,    K    takes  on two values,    K      and    K      where 
* o      c 

K =60 or 150 depending on M .  There is no clear-cut optimal W . 

It appears that W = 60 is a good choice for K = 60 and M = 200 

while W = 80 is a good choice for K =150 and M = 400 . 

Results for S =0.3? and M = 200, 400 are shown in 
o 

Tables 6.3 and 6.4,  We see th?t there is no significant degradation 

in channel performance (from the optimum) given by the CONTEST algo- 

rithms and Heuristic RCP.  The CONTEST algorithms, however, seem to 

have an edge over Heuristic RCP.  The excellent performance of the 

CONTEST algorithms can be attributed to the flatness of S    and 

D near the optimum as a function of the control limit (see Fig.,. 
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CONVROL SCHEME 

RANDOM NUM- 
BER GENERA- 
TOR SEED IN 
SIMULATION 

out    1 
D 

ICP 

RCP 

IRCP 

0.31778 

0.31817 

\      0.31817 

29.857 

29.085 

29.085 

ICP 

RCP 

39474 

78453 

0,315 

o.ns 

33.427 

28.824 

ICP-CONTEST W = 20 

"    "    W = 40 

"    "    W = 60 

"    "    W = 80 

1 RCP-CONTEST W = 20 

W = 40 

W = 60 

W = 80 

73645 

39587 

59478 

54857 

49784 

58474 

20494 

10398 

0.314 

0.315 

0.317 

0.318 

0.315 

0.322 

0.319 

0.3i7 

1 

40.893 

30.514 

32.355 \ 

35.809 

33.052 

33.335 

32.138 

|  32.501 

Heuristic RCP 

Heuristic RCP " 

K = 10 
m^2 

K = 60 

f 

K1 = 10 

K2 = 60 

K = 120 m^3 
m 

18867 

61111 

!   63037 

07275 
I 

0.316 

0.315 

0.310 

0.316 

33.720 

34.554 

1  55.425 

1  34.635 

Table 6.3 Throughput-delay results of a controlled channel 
(M = 200, S - 0.32) 
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CONTROL SCHEME 

R.MJDOM NUM- 
BER GENERA- 
TOR SEED  IN 
SIMULATION 

S    ^ 
out 

n 

1CP 

RCP 

IRCP 

0.3)807 

0.31844 

0.31844 

33.096 

31.608 

31.608 

ICP 

RCP 

84023 

40393 

0.315 

0.31- 

31.427 

31.023 

ICP-CONTEST    W = 20 

K = 40 

"           "           W - 60 

W =  80 

RCP-CONTEST    W = 20 

W = 40 

W = 60 

W = 80 

W =  100 

W =   120 

94875 

39848 

"4945 

94875 

49784 

58474 

20494 

10398 

64945 

18494 

0.315 

0.314 

0.312 

0.316 

0.313 

0.319 

0.318 

0.317 

0.314 

0.319 

43.262 

34.723 

53.240 

39.11? 

41.087 

43.379 

38.821 

40.068 

35.689 

47.149 

Heuristic  RCP 

Heuristic  R^v < 

K    =  10 
171^2 

K    -  ISO 
m 

Kj  =  10 

K2 =   100 

K    =  200    m^3 
Hi 

57298 

16489 

38687 

46534 

0.316 

0.316 

0.312 

0.311 

45.150 

44.750 

42.040 

43.136 

Table 6.4    Throughput-delay  results  of a controlled channel 
(M =  400,  S    = 0.32) 

'    o 
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CONTROL SCHEME 

RANDOM NUM- 
BER GENERA-] 
TOk SEEI'  IN| 
SIMULATION 

S 
out 

0 

ICP 

RCP 

1    IRCP                                                            1 

0.34925 

0.35217 

1     0.352.19 

49.552 

44.802 

44.772 

ICP 

|   RC? 

18654 

95646 

0.346 

0.348 

59.111 

48.655 

1CP-CONTEST    W = 20 

W = 40 

I      "           "          W = 60 

"           "          W = 80 

RCP-CONTEST    W = 20 

W = 40 

"           M           V   = 60 

W =  80 

18947 

53857 

89574 

10394      j 

0.:847 

39.75 

60389 

10489 

0,333 

;     0.339 

0,330 

0.332 

0.347 

0.345 

0.345 

0.347 

83.664       [ 

77.357 

87.61^4 

73.310 

67.900 

50.853 

50.534 

51.787 

Heuristic RCP i 

Heuristic RCP . 

K    =   10 
ite2 

K    = 60 
m 

K    =   10 

K0  =  60 

K    =120    m>3 
m 

94854 

1      37776 

94854 

18495 

0.349 

0.344 

(-.350 

0.347 

48.535 

46.116 

50.267 

54  583 

Table 6.5    Throughput-del ay result-,  of a  controlled char.nol 
(M =   200,   S     =   0.361 
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RANDOM NUM- 
BER GENERA- 

CONTROL SCHEME TOR SEED IN 
out 

D 
SIMULATION 

ICP 0.34846 69.237 

RCP 0.34715 73.588 

IRCP 0.34847 69.215 

ICP 28879 0.343 73,524 

RCP ^217 0.350 79.270 

ICP-CONTEST    1   * 20 38457 0.334 128.460 

W - 40 06348 0.330 98.994 

W = 60 74948 0.336 126.143 

W = 80 74394 0.332 119.628 

RCP-CWTEST    W =  20 38457 0.341 99.701 

W = 40 06548 0.335 97.676 

W = 60 74948 0.343 97.048 

W =  80 74194 0.340 91.833 

W =  100 3837? 0.343 107.722 

W =  120 93875 0.337 99.192 

K    =  i0 
J                 m^2 

99581 0.344 66.327 
Heuristic RCP 

K    =  ISO n 54857 0.352 70.590 

Ki ■10 38378 0.345 81.324 
Heuristic RCP \ K0 =  100 

K    * 200    m>5 
m 

36949 0.348 62.662 

Table 6.0 Throughput-delay results of a controlled channel 
(M - 400, S0 = 0.36) 
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6-12 to 6-15). This property is typical of channel load lines speci- 

fied by small to moderate values of S . We see in the same figures 

that the flatness in S    and D near the optimum is not as pro- 
out 

nounced when S = 0.36 . This explains the more significant degrada- 
o 

tion in channel performance given by the CONTEST algorithms shown in 

Tables 6.5-6.6. Note that for S = 0.36 , Heuristic. RCP gives much 

better throughput-delay results than the CONTEST algorithms. 

In Figs. 4-2 and 4-4, it was si own that in ^n uncontrolled 

channel, a channel input rate of 0.8 packet/slot sustained for 100 

time slots was enough to cripple the channel.  In Figs. 6-23 and 6-24, 

we show by simulations that under similar but more severe circumstances 

both the 1RCP-C0NTEST algorithm and Heuristic RCP prevented the 

channel from going into saturation.  In these simulations, the normal 

channel load line was given by M = 4 DO and (n , S ) = (4, 0.32) 

both before and after the pulse.  During a period of 200 slots 

(namely, the time period 1000-1200), the packet generation probability 

a was increased such that Ma = 1.0 packet/slot.  Observe that both 

algorithms handled the sudden influx of new packets with ease.  In 

both cases, the channel throughput, instead of vanishing to zero as 

in an uncontrolled channel, maintained at a high rate and within less 

than 3000 slots, the channel returned to almost normal operation. 

6.7.4 Other Proposed Schemes 

Other channel control procedures have been proposed by Metcalfe 

[METC 7oA] and Rettberg [«fcTT 73C1. 

In Metcalfe's proposal, Q is defined to be the current number 

of channel use;o who have a packet ready to transmit over the channel. 
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(Q    is different   from our channel  bncklo>> size    N       since    Q    incUides 

both backlogged and newly generated packets.)    The  control  scheme 

suggested is that each of the    Q    channel users  transmits  in the next 

time slot with probability    g- .    This  strategy maximizes the expected 

channel throughput  in the next time slot   (provided that    Q    is kno. ' 

exactly)  and is referred to as throughput >r.2Y^mizirg retransmission 

control.    The channel performance given by this control scheme was 

studied through a steady-state analysis by Metcalfe   [METC 73A]. 

However,  the channel performance given by this  control  scheme in a 

dynamic environment  (either through analysis or simulation) has not 

been studied. 

Rettberg's proposal  is concerned with satellite communication 

involving a small number  (e.g., M = 2 to 10 )  of stations,  each of 

which has buffering and scheduling capabilities.     In Rettberg's 

scheme,  newly generated packets attempt transmission over the channel 

without any delay.    Previously collided packets  form a queue at each 

station.    Each station has a "gating" probability    x    of transmitting 

the packet  at the head of its   (backlog)  queue in a time slot.     Rtttberg 

suggested that the gating probability may be chosen  such  that 

Mx ■♦■ S ^  1    where    S    is  the channel   input  rate of new packets.     Sincj 

in this  case the channel  traffic rate    G    is  forced to be  less than 

or equal to one,    no channel  saturation will  occur.     Simulations 

[RETT 73C]  supported this  claim. 

This   scheme may be referred to  as probability division multi- 

plexing  (PnM).     Each channel  user,   instead of getting a fixed  fraction 

G = Mxp ♦ S  ,  where    p    is  the probability that  a station's backlog 
queue is nonempty. 
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of the communication channel capacity such as in time division multi- 

plexing (TDM) or frequency division multiplexing (FDM), now gets a 

random fraction of the channel capacity through the gating probability 

x . Thus, similar to TDM and FDM, this scheme will work quite well 

when M is small and each station has a relatively "smooth" input 

source. However, when M is large and tach user has a bursty input 

source, RDM will suffer from the same pitfalls of FDM and TDM.  That 

is, many channel users will often have an empty backlog queue (while 

others have very long queues). As a result, the actual channel 

traffic rate is very low, which gives rise to a small channel through- 

put rate. However, the average packet delay is high, since a small 

x  (due to a large M ) has been adopted.  In this case, soue  scheme 

which allocates gating probabilities x.  to channel users dynamically 

as a function of their instantaneous transmission requirements may 

M 

prove useful.  (The constraint is now  ) x. ■»■ S ^ 1 .) 
i=l 1 

6.7.5 Channel Design Considerations 

Consider the design of s slotted ALOHA channel characterized 

by the linear feedback model.  Given M , a and K , the channel load 

line and the equilibrium contour may intersect in three different 

ways depicted in Figs. 5-6 (a), (b) and (d). 

In Fig. 5-6(d), the channel is overloaded in the sense that 

the globally stable equilibrium point corresponds to the channel 

saturation point.  This situation should always be avoided (e.g., 

by reducing the number of channel users). 
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In Fig. 5-6(a), the channel operating point  (n , S ) is also 

the globally stable equilibrium point. 

In this casej the assumption of channel equilibrium at  (n . S ) 

is valid. Hence, no channel control is necessary. 

We have been mostly concerned with the dynamic control of an 

unstable channel such as shown in Fig. 5-6(b). 

Consider the K = 10 equilibrium contour in Fig. 5-3.  Given 

an average user think time = — (where — is the slope of the 

channel load line), there is a maximum value of M such that the 

channel is stable.  For example, if - = 615 slots (= 14 seconds), 

the maximum number of channel users is approximately 100 without 

rendering the channel unstable. At this value of M , the channel 

throughput rate S = 0.162 and the average packet delay D = 17.5 

slots (0.394 second),  if we want to increase the channel utilization 

(throughput) by increasing the number of channel users M , one of 

several things can be done: 

(1J   Do nothing. 

(2) Increase K . 

(3) Dynamic channel control. 

Suppose    M    is  150  giving    S    = 0.244   .     The  channel  is now 

unstable, but from results in Chapter 5, has a channel PET of several 

days.     If this is  an acceptable channel  failure rate, no external 

control  is necessary except to restart the channel whenever it goes 

into saturation. 
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Increasing K from 10 to 60 allows the channel to support 

up to 200 users at S = 0.32 .  But now the throughput-delay tradeoff 

curve for K ■ 60 is much above the optimum performance envelope 

in Fig. 3-4.  In Fig. 3-5, we see that for S * 0.32 , D = 45.5 

slots (1.02 second). 

Dynamic channel control can give rise to a stable channel as 

well as providing a throughput-delay tradeoff close to the optimum 

envelope.  For example, consider the results in Table 6.3 for M = 200 

and S =» 0.32 . under the assumption of perfect channel state in- 

formation, a channel throughput-delay tradeoff very close to the 

optimum envelope is possible as shown in Figs. 6-17 to 6-20 for ICP 

and RCP. Without perfect channel state information, we have shown 

by simulations that throughput-dela/ results close to the optimum 

envelope can still be achieved using the CONTEST algorithms up to 

S = 0.32 .  (Recall that this is a consequence of the amazing flat- 

ness of S    and D near the optimum except when S  is large.) In 

any case, the channel operating point probably should not be designed 

with a value of S > 0,32 .  For S > 0.32, even if it is possible 
o o r 

to achieve the optimam envelope, the incremental gain in channel 

throughput is at the expense of a sizable increase in delay. 

In a real system, it is imaginable that the channel input may 

vary with time (say M fluctuating between say 100 to 200 in the 

above example). We must emphasize the fact that the control algo- 

rithms considered have been designed to control statistical channel 

fluctuations under the assumption of a stationary channel input. 
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Although we showed that they car» temporarily handle very hi^h channel 

input Tt.tes  (see Figs. 6-23 to 6-24) , otl.er control mechanisms should 

be designed into the system to make sure that an overloaded channel 

such as depicted in Fig. 5-b(d) docs not prevail for any long period 

of time (e.g., by limiting the maximum number of users who can "sign- 

on" and become active channel users). 

We showed earlier that IRCP gives a channel performance at 

least as good as ICP and RCP.  Furthermore, with two control limits 

n,  and iL , it acts like RCP (with f ) under normal channel con- 

ditions, but has a second "defence" in iL whenever the channel 

traffic increases to a very high value. Comparing IRCP-CONTEST and 

Heuristic RCP, we see that the latter is easier to implement and 

exhibited in several simulations better channel performance for a 

heavily loaded channel  (5> = 0.36).  However, under a normal load 

(say S ^ 0.32), IRCP-CONTEST is superior to Heuristic RCP, This 

is because Heuristic RCP introduces longer delays to collided packets 

even when these packets are just unlucky in light channel traffic. 

On the other hand, in IRCP, control actions are not exerted until the 

channel traffic exceeds some critical values. 
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CH/PTER 7 

MUITI-PACKET MESSAGE DELAY AND 

SATELLITE RESERVATION SCHEMES 

In a packet switched network, "messages" generated by external 

sources for transmission over the network are broken into fixed size 

packets.  Up to now we have assumed that all messages generated are 

fixed length single packets.  We have also used the average packet 

aelay as our channel performance measure. This assumption is indeed 

justified in an interactive computer communications environment. 

Measurement results [KLEI 74B] indicate that 96 percent of the ARPA 

network traffic consists of messages shorter than a single packet. 

However, there are situations in which the average packet delay is 

not an appropriate channel performance measure:  for example, the 

transfer of long data files and the transmission of digital voice 

messages [BAYL 73].  In these cases, a more appropriate performance 

measure may be the average message delay, namely, the delay incurred 

by a message from the time it is ready for transmission until when 

all packets in the message have been correctly received at the 

message destination. 

A satellite reservation system has been studied for multi- 

packet message arrivals by Roberts [ROBE 73].  In this system, the 

satellite channel is dynamically partitioned irto a slotted ALOHA 

channel for broadcasting reservation requests ard a scheduled channel 

for transmitting multi-packet blocks of data.  Since the minimum 

delay in this case is two satellite round-trio propagation times 
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(= 0.5 sec), this system is preferable if i\  significant fraction of 

the channel input source consists of multi-packet messages and if the 

average message delay is the relevant channel performance measure. 

In this chapter, we first derive an approximate formula for 

the average message delay in a slotted ALOHA channel. Next, Roberts' 

reservation system will be introduced. Two other satellite reserva- 

tion schemes will also be described; these two schemes may be used 

if there is only a small number of channel users and if the channel 

input source has constant as well as random components. The reserva- 

tion schemes, by reducing the amount of channel collisions, are 

capable of providing channel throughput rates well in excess of the 

slotted ALOHA channel capacity. 

7.1   Multi-Packet Message Delay 

In this section, we consider a slotted ALOHA model such as 

the infinite population model in Chapter 3. However, each arrival 

is now a messaf» of L packets (where L is an integer-valued 

random variable specified by some probability distribution). A 

good approximation for the message delay is the delay incurred by 

the packet in the message with the most number of retransmissions. 

Define 

p = Prob[collision/transmission of a new packet] 

p = Prob[collision/transmission of a previously collided 

packet] 

Thus, p «l-a  and p = 1 - q  where q  and q  are specified 

by S and K in Chapter 3.  Let C be a random var*abxe representing 
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the number of channel collisions a packet incurs before its successful 

transmission. We then have 

I - pn i = 0 
Prob[C » i] = (7.1) 

Prob(C ^ i] = 1 - p^1 (7.2) 

We shall assume thai all packets in a message have independent 

indentically distributed numbers of channel collisions.  Let C« be 

the maximum of Z    independent random variables with identical dis- 

tributions given by Fq. (7.2). Hence, 

rrob[C^ ^ i] = (Prob[C si]) 

- (1 - PnPt ) 

Define the expectation of C« to be 

oo 

Ep ■ E[Cp] =  2.   Prob[C« >  i] 
^ ^       i=0 *• 

(7.3) 

Z   [l - (i - P^t1/] 
i-0 

00 

=  ft   ^Vt    "    2)Pn    Pt      +  UK    Pt    " 
1=0 

(-i)     Pn Pt   1 

1 (-^(tl-^T pi ^' i - pt
J 

(7.4) 
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The average delay for a message of   I    packets  is thus approximated b> 

D£ =  R + £ + E^R +   (K +   l)/2] (7.5) 

where R + (K ■♦• l)/2 is the average retransmission delay. Note that 

no buffer scheduling delays are included in this estimate. Thus, the 

actual average message delay will probably be slightly larger than 

D« .  Using the above estimate, the average message delay for the 

channel is given by 

D    = Z D. • Prob[L = I] (7.6) 
mess   I     ^ 

D« has been evaluated for £ = 1, 2, 4, 8, 20 and plotted in 

Fig. 7-1 using numerical values of a  and q  for i< = 15 in 

the infinite population model in Chapter 3. Thus, the I -  I    contour 

in Fig. 7-1 is the same as the K = 15 contour in Fig. 3-4. Several 

simulation points are also shown for £ * 4 and 8 . These simulations 

were performed for the finite population model in Chapter 3 with 20 

users and K = L = 15 . Note that alx simulation delay values are 

larger than their corresponding analytic values since buffer scheduling 

delays are included in the simulation aussage delay. Assuming that 

the channel input is equally divided between single-packet and eight- 

packet messages, the average message delay for the channel is shown 

in Fig. 7-2. 

Simulations also indicate that when the channel input consists 

of many multi-packet messages, the slotted ALOHA channel is "more 

unstable" than before.  It may be possible to extend the stability 
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and control analyses in Chapters 5 and 6 to account for n:iilti-packet 

messages.  Such a study, however, is beyond the scope of this 

dissertation. 

7.2   A Reservation System for Multi-Packet Messages 

In Roberts' study of a satelix e reservation system, the message 

arrivals to each station are assumed to be Poisson and equally divided 

between single-packet and eight-jacket messages. The channel is 

dynamically partitioned into a slotted ALOHA reservation channel and 

a scheduled channel in the following manner [ROBE 73]: 

"....the satellite channel is diviaed into time slots of 1350 
bits each. However, after eve~y M slots one slot is sub- 
divided into V small s]otc. The small slots are for re- 
servations and acknowledgr.ents, to be used on a contention 
basis with the ALOHA technique. The remaining M large 
slots are for RESERVED data packets. When a data packet 
or multi-packet blcck arrives at a station it transmits a 
reservation in a randomly selected one of the V small 
slots ir the next ALOHA group. The reservation is a re- 
quest for from one to eight RESERVED slots.  Upon seeing 
such a reservation each station adds the number of slots 
requested to a count, J, the number of slots currently 
reserved. The originating station has now blocked out a 
sequence of RESERVED slots to transmit his packets in. 
Thus, there is one common queue for all stations and by 
broadcasting reservations they can claim space on the queue. 
It is not necessary for any station but the originating 
station to remember which space belongs to whom, since the 
only requirement is that no on^ else uses the slots." 

Each small ALOHA slot i:, 224 bits long  (V = 6)  and can accommodate 

an acknowledgment packet, a reservation packet or a small data packet. 

In a reservation packet, the reservation request is triplicated to 

improve the probability of error-free reception of the request by 

all stations. 

The queueing delay in the above reservaticn system may be ob- 

tained by modelling the common queue as a M/G/l queueing system 
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[KLEI 74D]. The delay incurred by a message consists of the slotted 

ALOHA (reservation) delry and the queueing delay. Thus, the message 

delay is bounded below by two satellite round-trip propagation times 

(= 0.5 second).  Given that the channel input is equally divided 

between single-packet and eight-packet messages and assuming a 50 

KBPS channel and ten stations, Roberts showed that the slotted ALOHA 

scheme gives a lower average message delay than the reservation sys- 

tem for S   < 0.15 : however, for S   > 0.15, the reservation 
out out 

system gives a lower delay.  Furthermore, a channel throughput rate 

close to one is achievable in the reservation system.  For a large 

population of stations with low data rates, both the slotted ALOHA 

scheme and the reservation system are far superior to traditional 

techniques such as Time Division Multiple Access (TDMA) and Frequency 

Division Multiplexing (FDM). The latter techniques are competitive 

only when each individual station has a data rate of 50 KBPS.  On 

the other hand, the packet switching techniques depend upon the total 

multi-station traffic rather than the individual station traffic for 

their efficiency. 

Simulation results for the reservation system indicate that 

analytic results given by the M/G/l queueing model are very accurate. 

However, the slotted ALOHA reservation channel exhibits unstable be- 

havior [LAM 73].  Since the overall performance of the reservation 

system depends upon the slotted ALOHA reservation channel performance, 

some dynamic channel control scheme (such as those in Chapter 6) may 

be necessary. 
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When a significant fraction of the channel input consists of 

multi-packet messages, the reservation system has the following ad- 

vantages compared to the slotted ALOHA scheme: 

(1) The average message delay is smaller (except at 

a low channel throughput rate)t 

(2) The channel capacity is larger. 

(3) The slotted ALOHA scheme tends to be "more unstable" 

with multi-packet messages.  On the other hand, in 

the reservation system, the slotted ALOHA reserva- 

tion channel input consists of only single packets 

(reservation requests, acknowledgments).  For a 

relatively large V (number of small slots in a 

large slot), a low reservation channel input rate 

can be maintained for ^ood channel stability using 

just a small fraction of the total channel bandwidth. 

7.3   Reservation-ALOHA Schemes 

We describe in this section two satellite "reservation" 

schemes based upon the slotted ALOHA scheme.  By providing some degree 

of synchronization among the channel users, they arc capable of 

achieving a channel throughput rate well in excess of the slotted 

ALOHA channel capacity.  However, the channel performance of both 

reservation schemes depends upon (1) a small number of stations (in 

the order of R, the number of slots in a round-trip satellite propa- 

gation time), and (2) each station's inpuc source (of packets) consists 

of both constant and random components. 

234 



The first reservation scheme is known as reservation-ALOHA 

in which the . otion of a "time frame" is introduced [CROW 73].  The 

channel time is divided into consecutive time frames.  Kach time 

frame contains at least R slots.  Channel slots in which a station 

had successful packet transmissions in the previous time frame are 

reserved for it to use again in the current time frame; no other 

stations are permitted to use vhese slots.  Channel slots which were 

either empty or contained collisions in the previous time frame are 

available for random access by all stations in the current time frame. 

Thus, once a station has acquired a channel slot, it can keep the 

same slot in every time frame as long as it has something to transmit. 

Consequently, the channel performance is very good if the stations 

have deterministic uniform arrivals; the channel performance suffers 

when packet arrivals to stations are infrequent and random.  Simula- 

tion results indicate that a channel throughput rate close to cne is 

achievable at the expense of long packet delays.  Also, for a given 

channel throughput, packet delays tend to increase as the number 

of stations increases [RETT 73B]. 

The second reservation scheme to be referred to as priority 

reservatioi.-ALOHA adds a priority mechanism to the frame principle 

of reservation-ALOHA [BIND 72]. In this scheme, each station owns 

at least one slot per frame. The owner of a slot has the highest 

priority in the event of a collision in the slot. Thus, a station 

that has been idle is guaranteed channel usage within a maximum of 

two time frames.  Beyond ownership, slots are also assigned.  When 
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two assignees of a slot  are involved in a collision,  the conflict 

is resolved by some globally known priority assignment mechanism. 

Thus,   in ail cases, each packet requires  at most one retransmission. 

This scheme is more complex to implement  than reservation-ALOHA, 

but premises to give smaller delays 1:0 stations with  infrequent 

packet  arrivals.    The throughput-deIsiy performance of this scheme 

has not been demonstrated. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUFURE RESEARCH 

Trends in the growth of computer-communication networks seem to 

indicate that the next generation of networks will be at least an order 

of magnitude larger than existing designs.  Present implementations, 

however, are not directly applicable to very large networks.  New tech- 

niques are needed which can provide cost-effective, high-speed communi- 

cations for large populations of (potentially mobile) users scattered 

over wide geographical areas.  Under these circumstances, we feel that 

packet switched satellite and ground radio systems provide attractive 

solutions to the design of comm'jnication subnets and term  1 access 

networks respectively.  A. packet switching technique which has attracted 

considerable attention is th slotted ALOHA random access scheme. 

The objective of this research was to develop analytic models 

with which we can evaluate and optimize the performance of a slotted 

ALOHA channel; our emphasis is on a large population of small users.* 

Results obtained in this dissertation are summarized in Section 1.4. 

Major contributions of this research may be classified into three cate- 

gories: 

f a coherent theory of channel behavior in which the key result 

is the characterization of stable and unstable channels 

• evaluation of channel performance such as equilibrium 

through put-de lay tradeoffs for stable channels and stability- 

throughput-de lay tradeoffs for unstable channels 

♦Recall that our abstract model of a small user represents a burstv 
user with buffering space for only one packet. 
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•  dynamic channel control and estimation procedures for optimal 

control of unstable channels. 

To design a slotted ALOHA random access system for small (bursty) 

users, the following steps may be followed: 

(1) Evaluate the equilibrium throughput-delay tradeoff curves. 

Then, choose an operating value for K (or p) which gives 

an equilibrium channel throughput-delay tradeoff close to 

the optimum performance envelope. 

(2) Given the average user think time — ,  insure that the 

channel is not overloaded (as shown in Fig. 5-6(d)) by 

limiting the number of active users  (M) who can "sign-on" 

and use the channel. 

(3) For i* small enough M , the channel may already be stable 

according to our stability definition. In this case, the 

system design is complete. 

(4) For bursty users (i.e., — is large), a stable channel is 

associated with a very low channel throughput rate. 

Increasing M to increase channel utilization will rende^ 

the channel unstable.  In this case, go to either (S) or (6). 

(5) If the unstable channel has an acceptable channel failure 

rate (i.e., FET) or one can be achieved by increasing the 

operating value of K without significantly increasing 

delay, the system design is complete.  Otherwise, go to (t>). 
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(6) Incorporate into the system (.it each channel user) capabilitv 

for storing channel information within :i  history window and 

implementing channel state estimation ami dynamic control algo- 

rithms.  Results in Chapter 6 indicate that with dynamic chan- 

nel control, a channel throughput-delay performance close to 

the optimum performance envelope is achievable over an infinite 

time horizon for (originally) unstable channels. 

(7) In a practical system, the load (M)  on the channel will 

probably vary as a function of time with periods of heavy and 

light loads.  The system should be designed for heavily loaded 

conditions since the performance of a lightly loaded channel 

is relatively insensitive to the system design.  (See, for 

example. Figures 3-5, 6-12 and 6-13.) 

Equilibrium throughput-delay tradeoffs have also been obtained 

for the large user model and multi-packet messages.  In the former case, 

substantial improvements in the channel performance are possible if the 

large user accounts for a significant fraction of the channel input rate. 

In the latter case, if a large fraction of the channel input consists of 

multi-packet messages and the average message delay is the relevant per- 

formance measure, we concluded that Roberts' reservation system is super- 

ior to slotted ALOHA.  Note, however, that the reservation system util- 

izes the slotted ALOHA scheme for broadcasting reservation requests; our 

slotted ALOHA results apply to the reservation subchannel in this system. 

Numerical results in this dissertation were obtained assuming 

a 50 KBPS satellite channel with 1125 bits/packet and a channel round- 

trip propagation delay of 0.27 second.  The models and methodology 
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developed, however,  are independent of these assumptions  and may be 

applied to satellite channels with different  data lates,  ground radio 

systems  as well  as wire communications such  as multi-drop  lines  and 

loop systems. 

Extensions to this research 

Before small S£.tellite earth systems become an economic reality, 

satellite channel users will  tend to be "big"  and  few in number.     For 

exajnple,  the Satellite  IMP,  being designed for the ARPANET Satellite 

System, will have buffer space  for 32 packets   [BUTT 74].    This situation 

corresponds to the finite population model studied in Chapter 3.    Our 

stability and dynamic channel  control results in Chapters F. and 6 may 

be extended to this case.    However,  the state description is now a vec- 

tor consisting of the queue sizes  at  all  satellite stations  instead of a 

single variable such as i\ the linear feedback model. 

For dynamic channel  control procedures  considered in this 

research,  optimal control policies were  found to be of the control  limit 

cype in all our numerical examples.     A rigorous matheiuatical proof of 

this  result remains  an open problem. 

The slotted ALOHA channel  is  characterized by the throughpat-load 

curve depicted in  Fig.   8-1,  wi.ich  is  typical  of "contention" systems 

[AGNh 73].     Unlike queucing systems  in which  the  throughput  increases 

to one  as  the system load increases,  the throughput of a contention 

system increases  to  a niaximum value  and then decreases. 

In this dissertation,  we have characterized the unstable behavior 

and studied dynamic  control  schemes   for r  specific  contention system, 
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namely, slotted ALOHA random access.  The probabilistic model and tech- 

niques employed here can probably be extended to solve stability and 

dynamic control problems of other contention systems. 

a, 

LOAD ON THE SYSTEM 

Fig. 8-1 A Typical Throughput-Load Curve for a Contention System 

One class of contention systems consists of random access packet 

switching techniques (relatives of slotted ALOHA!) such as pure ALOHA, 

FM capture and carrier sense.  These systems seem to exhibit unstable 

behavior similar to that of slottea ALOHA and may be dynamically con- 

trolled by similar schemes.  As of now, most efforts in the study of 

these systems have been concentrated on the evaluation of the system 

capacity and equilibrium throughput-delay tradeoff.  Little attention 

has been given to the problems of stability and control.  For example, 

the ALOHA System at the University of Hawaii has been estimated to be 

able tö support over 300 interactive users (assuming the multi-access 

channel capacity to be y- S 18%) [ABRA 70).  We feel that these fig- 

ures are unrealistic for an uncontrolled system, but may be achieved 

given appropriate dynamic channel control. 
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Many other existing systems can also be characterized as conten- 

tion systems and exhibit unstable behavior similar tJ that of slotted 

ALOHA.  A highway is a contentrcn system and Fig. 8-1 represents the so- 

called "fundamental diagram of traffic" [ASHT 66]. Simulation results 

for store-and-forward packet switching network . show that they have 

throughput-load curves similar to that depictec in Fig. 8-1 [KAHN 71, 

DAVI 71].  It is interesting to note that heuristic flow control routing 

algorithms suggested by Kahn and Crowther [KAHN 71] and the so-called 

"isarithmic" networks proposed by Davies [DAVI 71] are similar in spirit 

to our dynamic channel control procedures. 

Agnew considered a general deterministic mode1 of a contention 

system and studied its dynamic control through pricing [ACNE 73].  A 

topic of future research interest is the formulation of a general proba- 

bilistic model of a contention system.  It may be possible to extend the 

stability and dynamic control results in this dissertation to the general 

model. 
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APPENDIX A 

SIMULATION RESULTS FOR THE POISSON ASSUMPTION 

Channel traffic is a random variable representing the total 

number of packets transmitted by all users into a channel time slot. 

Both zeroth order and first order approximations in Chapter 3 assumo that 

channel traffic is Poisson distributed (the Poisson assumption).  In 

this appendix, we examine further the accuracy of the Poisson assumption 

through simulations. 

Let P. be the fraction of time slots, each of which has exactly 

i packet transmissions, over the duration of a simulation run. P. ._n 

represents the measured probability distribution for channel traffic. 

(M is the number of channel users.) The channel throughput rate S   is 
M 0lit 

given by    P    .    The channel  traffic rate    G    is given by       ^   i P-   « 
1 i=l        1 

We give below comparisons between    P.     and the Poisson probabilities 

r       -C 
— e   for the infinite population model, the linear feedbacx model 

and controlled channels. 

In Table A.l,  P.  and the corresponding Poisson probabilities 

are shown for various cases of the infinite population model.  In all 

ca^es,  R = 12 and the simulation duration is 8000 time slots.  Lach 

simulation run satisfies the channel equilibrium criterion in Section 

3.2.3.  Cases (a), (b) and (c) correspond to K = 5, 15 and 40 respec- 

tively with S   ^ 0.25 .  Note that the Poisson approximation is better 

for  K = 15, 40 than K = 5 .  (This observation is consistent with the 

conclusion of Theorem 4.1.)  Cases (b), (d) and (e) correspond to ^ t 
= 

0.245, 0.150 and 0.304  respectively with  K = IS .  Note that the Pois- 

son approximation is better for a smaller S 
out 
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In Table A.2,  comparisons  are shown for the  linear feedback model 

with    M = 200    and four different  retransmission delay probability dis- 

tributions   (corresponding to those  in Fig.   5-1).     l.ach simulation run 

has a duration of 8000 time slots  and satisfies the channel  equilib'ium 

criterion.     In all  four cases,  the  Poisson  approximation  is excellent. 

In Table A.3,  comparisors  are shown for three controlled channels 

with    M = 200:   (a)   ICP-CONTEST with    W = 40    and    n  = 22,   (b)  RCP-COMTcST 

with    W = 40    and    n =  18,   and  (c)  Heuristic RCP with    K    =  30    and 

K    = 60    for    m > 2.     R is  assumed to be    12    and each simulation run m 

has a duration of 30,000 time slots. In all cases the Poisson approxi- 

mation is quite good. (Note that performance of the CONTEST algorithms 

depends upon the accuracy of    Pn = t?        within a time history window.) 

From comparisons  in Tables A.l  - A.3,  we  also observe the  follow- 

ing: 

(1) In all cases,    P0 > e' 

(2) In all cases,  P < Ge  ; this is expected since finite 

retransmission delays are used. 

(3) In most cases,  P.  (2 ^ i < 6) are larger than the cor- 

responding Poisson probabilities.  On the other hand, 

the Poisson distribution has a much longer tail than the 

measured channel traffic probability distribution. 
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(a)    K « 5 

S    , =  0.253 out 

G = 0.432 

i P. 
1 

Poisson 

0 0.6671 0.6490 

1 0.2530 0.2806 

2 0.0649 0.0607 

3 0,0116 0.0087 

4 0.0025 0,0009 

5 0.0005 0.0001 

6 0.C004 0.0000 

(b)     K * 15 

S    fc = 0.245 out 

G = 0.361 

i P. 
i 

Poisson 

0 0.7011 0.6973 

1  1 0.2451 0.2514 

\      2 0.0466 0.0453 

II  3 0.0064 0.0054 

4 0.0008 0.0005 

5 0.0000 0.0000 

6 0.0000 0.0000 

(c)     K = 40 

out 

G * 0.',84 

0.252 

i P. 
i 

Poisson 

0 0.6872 0.6814 

;  1 0.2516 0.2614 

!  2 0.0524 0.0501 

3 0.0080 0.0064 

4 0.0008 0.0006 1 

5 0.0000 0.0000 

1  6 
0.0000 0.0000 

 1 

Table A.l    Channel traffic probability distribution 

(infinite population model). 

25^ 



id) K = 15 

S „ = 0.150 
out 

G = 0.184 

i P. 
i 

Poisson 

0 0.833S 0.8315 

:    i 0.1500 0.1534 

2 0.0153 0.0142 

3 0.0011 0.0009 

4 0.0000 0.0000 

5 0.0001 0.0000 

6 0.0000 0.0000 

(e)  K = 15 

S   = 0.304 
out 

G = 0.586 

i P. 
i 

Poisson 

0 0.5722 0.5563 

1 0.3045 0.3263 

2 0.0946 0.0957 

3 0.0229 0.0187 

4 0.0048 0.0027 

5 0.0009 0.0003 

6 0.0001 0.0000 

Table A.1  ^"ontinuedj 
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. __ 
1         1 P                       | Poisson 

i      1, 
1 

Poisson '  ^                    l 

0 0.6086 0.6021 0- 0.6264    1 0.6256 

1      1 0.2944 0.3055 1 0.2934 0.2934 

1      2      1       0.0805 0,0775    | 2 0.0670 0.0688 

1      3      1 0.0141 0.0131 3 0.0116 0.0108 

4      I 0.0023   \ 0.0016 4 0.0014 0.0013   1 

5 0.0001 0.0002    | 5     1 0.0002    1 0.0001 

6 0.0000 0.0000 6     \ 0.0000 0.0000 

li                       i 

fal    R ■ 12     K = 10 
(b)    R = 0      K = 34 

C               -A    OOyl                                                                                        Q              —0    9QT 
Smit      0-294                                                        bout UUV                                                                                                                                     WWv 

p   —   n   en*?                                                                              n   -   0   AAQ V3   *   U. i>U /                                                                                                   U   -    U.H03 

 . , , 
i I 

1     i p 1 Poisson 
i P 

I           1 
Poisson 

-1 
J          i 

1     0 0.6308 0.6279 \     0 0.6373 0.6351 

1     1 1      0.2894 1     0.2922 1 ;     0.2831 0.2883 

2 1      0.0661 0.0680 2 0.0691 0.0655 

1     3 0.0113 0.0105 3 0.0095 0.0099 

4 1      0.0023 0.0012 4 0.0009 0.0011    ■ 

1     5 0.0001 1     0.0001 1      5 0.0001 0.0001 
1 

1     6 1      0.0000 1     0.0000 j      6             0.0000           0.0000    | 

L-           ...i       .  „ 

(c)     R = 12      p = I 
(d)    R=0     p = |- 

c                   r\   ion                                                                            C             —   n   O W ^ 
Soiit       0•289                                                           out  ~ UUt                                                                                                              v/uu 

n = 0.454 
G = 0.46! 3 

Table A.2    Channel  traffic probability  distribution 

(M =  200). 
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(a)  ICP-CONTEST 

K = 10 

Sout =0.315 

G = 0.597 

i P. 
i 

Poisson 

0 0.5612 0.5505 

1 0.3148 0.3286 

2 0.09f3 0.0981 

3 0.0223 0.0195 

4 0.0044 0.0029 

5 0.0009 0.0004 

6 0.0001 0.0000 

(b)  RCP-CONTEST 

K 10    K    * 60 
c 

S        = 0.322 out 

G ^ 0.655 

i P. 
i 

Poisson 

0 0.5340 0.5193 

1 0.3218 0.3403 

2 0.1084 0.1115 

3 0.0282 0.0243 

4 0.0061 0.r040 

5 0.0014 0.0005 

6 0.0000 0.0001 

(c)    Heuristic RCP 

Kj =10    K2 = 60 

S        ■- 0.316 out 

G = 0.579 

i P. 
i 

Poisson 

0 0.5670 0.5605 

1 0.3163 0.3245 

2 0.0922 0.0939 

3 0.0205 0.0181 

4 0.0034 0.0026 

5 0.0005 0.0003 

6 0.0001 0.0000 

Table A. 3    Channel traffic probability distribution 

(Controlled Channels). 
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APPENDIX ß 

ANALYSIS FOR THE LARGIZ USER >DDEL 

The set of nonlinear implicit equations ir )lving equilibrium 

values of S., G., q.  and q., (i = 1, 2) in the large user model will i  i* nin    Mit ^ >    ' & 

be derived.  Recall that variables indexed by 1 re :r to the small 

users and variables indexed by 2 refer to the la     ^r. 

Define E. and E- to be the average nurher or cnannel collisions 

for a small user and a large user packet respective^. Similar to the 

derivation of Eq. (3.5), we have 

Gi = 5.(1 ^ E.) i « 1, 2 (B.2) 

Thus 
Q . 

S. = G.  r^      i = 1, 2 (B.3) 
1   i q.^ + 1 - q. * Mit     Min 

which aie Eqr  (3.16) and(3.17). 

Referring to the model description of a large user in Section 

2.3.2, we introduce the following notation for events at the large user: 

TS = transmission success in a channel slot 

SS = scheduling success (i.e., capture of the transmitter 

as a result of having the highest priority among all 

packets scheduled for the current time slot) 

Each large ui>cr packet may be in one of the following three states de- 

pending on +l eir most recent history: 
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NP = newly generated packet 

SC = scheduling conflict   (i.e.,   failure  to capture trans- 

mitter) 

TC =  transmission conflict  in  a channel  slct 

Now define the variables, 

a    =  Prob   [SS/NP] 

at =  Prob   [SS/TC] 

a    = Prob   [SS/SC] 

r    =   Prob   [TS/SS,  NP] 

rt =  Prob   [TS/SS,  TC] 

r    =  Prob   [TS/SS,  SC] 

Given a large user packet,let E and E be the average number of SC 

events before SS, conditioning on NP and TC respectively. Similar 

to the derivation of Eq.   (3.S), we have 

En =  (1 -  an)/as 

Et =   (1   -  at)/as 

(B.4) 

(B.5) 

Recalling the definitions of    q^      and    q0. ,  we have 
^n      zz 

^t = (rt + Tsht'^1  + Et) 

The average station traffic (defined in Section 5.3.2) is 

G = S., [1 + E ♦  E,(l ♦ r ) ] (B.6) 
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and the  average packet delays  are 

D1 =  R +  1  - EjjR + rll  | (3.18) 

D2 = R + 1 + F.2  [R + —^j *   (En + E2Et)~- (3.19) 

where R + —r^— is the aveiagc retransmission delay and —y-    is the 

average reschedule delay (see Section 2.3.2). 

With the   sson and independence assumptions in Section 3.3.2 

for channel tra. .c and station traffic, we proceed to ^olve for the 

success probabiii uies q, , q-,  r , r , T- , a , a and o_.  (The ap- 

proach is similar to the derivation of q and q in the infinite popu- 

lation model.) Consider the transmission of a test packet in the cur- 

rent time slot; a conflict may occur as a result of new arrivals, packets 

retransmitting from a window of K slots or packets rescheduling from a 

window of L slots in the past. 

Define 

q    =  Prob   [no packet  retransmitting  fro™ one 

and 

of the K slots  to the current slot! 

q, - Prob [no packet rescheduling from o^c 

of the L slots to the current slot] 

We *hen have, 
n n      n    n w      _ n+i       .,        „m      r 

> 1 Is s/K-1 \ \     s 
q0=    ^    :—e       -l^e     V~l   ^     ^-mTc' n,m>l m-; 1 
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-G  VG.n    -G,  lv  An -(G+G } -(G.+G ) s >    1 1 / K-l\      r      M    s^ VI    s^ 
C      ni~0 —) + Gle 

-Gl/K     1 
+  K 

(,     -Gs)(-Cl     -Gl/K)    c    -(G1+V 

\' 
VGs      "     ^-iT1    „    -Gs      -Gs 

ra>2 mi y * Gse 

-G/i     -G 
I s s L e -e /(L-IJ 

L^2 

-G 
qh =   (Gs-H)   e 

L =   i 

Suppose the test packet  is  a small user packet.     Conditioning on 

a new packet, we have 

K  L -S 
^In = % % e 

.th 
Conditioning on a packet which had a channel collision in the j  slot, 

define 

q  = Prob [no other packet recransmitting from 

the j      F'DI to the current slot] 

[lc      .    -TG.+G ) 
l-e  v  1    s^ 

-Gs vG n    -G,/    .n+l 
, \ v'i   e   rjc-n 

, ~ ri 

♦   e 
VGi    -VK-IV

1 

n! 

/K .e-Gs\   -((rG^ 
1  - ——I-  e —y 

'[.     -(Gl + Gs^ i-e 
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We have, 

K-l L -S ,D   Q. 
*ltS%      *lc%e (B-8) 

Suppose the test packet is a large user packet  and condition on 

the event SS.    Define 

q = Prob   [no small user packet retransmitting 

from one of the K slots  to the current  slot1 

\ 1 13 S  /K-l\ ^ rr      r*   ^ !       S 

=    Z   ^«        "ire ^-       +(G1+GJ   e 
m+n>2 \      / 

-(Gi 
+ e 

and 

-G /K -(G1+Gs) 
= e + __1 e 

K 

Conditioning on the event NP, we have 

K -Sl rn = Prob   [TS/SS,  NP]  -- q e (B.9) 

-S -S 
Prob   [SS,  TS/NP]  = q0

Kqh
Le    V-e    2)/S2 

where we have made use of the scheduling priority  rule in Section  2.3.2 

in which new packets have  "he  lowest priority;   ties among new packets 

are bro.' ^n by random selection such that 

260 



Finally, 

a    -  Prob   [SS/NP] 
11 L 

-  Prob[SS,  TS/NP]/Prob[TS/SS,  NP] 

•(^f^    i1-**2)/^ (B.IO) 

Given that the large user test packet had a channel collision 

(TC) in the j  slot, define 

q2 = Prob [no small user packet retransmitting from 

the j  slot to the current slot] 

[„4, ■"e 

-G /K    -G1 
=    e          -e 

We  then have 

-G, 
1-e 

/{,.;'■'] 

rt = Prob [TS/SS, TC] 

K-l    -S] 

*      "kc  e 

and 
_c; 

Prob (SS. TS/TC] = Z ^ 'lo^^c ^'^    ' 
1 = 1 

(B.ll) 

where the scheduling priority rule ha? been used. 
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Finally 

at = Prob [SS/TC] 

= Prob [SS, TS/TC]/Prob[TS/SS, TC] 

l.(q0/q)
K]/|l-(q0/q)| (B.12) 

Given that the large user packet had a scheduling conflict (SC) 

in the j  slot, define 

We have 

q  = Prob [no other packet rescheduling from the j 

slot to the current slot] 

.th 

^sc 

V G        -G A   T \m-l 

^1 m! n^l I   L    i 

^Gm    -G 

^   IP: m>l 
m=l 

-1/ 

K) 
-G /L    -G. /L      -G 

e -e ■♦• e 

G    -   1       e 
-Gc 

r    = Prob   [TS/SS,  SG] (B.KVJ 

_K    -Sl 
=  q    e 

Prob   [SS,  TS/SC] 

I. 

K N     I 
- fi     q    -' f r qi       e 

i = l 

-S, 

20 J 



where the scheduling priority rulo has been used.  Finally 

a = Prob [SS/SC] 

= Prob[SS, TS/SC]/Prob[TS/SS. SC] 

.  L 
- K %c     1'% 

Eqs, (B.3) - (B.14) constitute a sot of nonlinear implicit equa- 

tions which may be solved numerically with specified values of K, L, G., 

and G0 (or S and S^). 

Limiting results 

In the limit as K, L+ *, the following limiting values may be 

obtained from the definitions of q , q, , q, q. , q.  and q  : Mo  Ti* '* nlc M2c    nsc 

-G^l-e  1  S)-{l-e  ^(l-e S/ 
q  " e no 

-G 
.    -G +l-e S 

L     s 
qh = e 

-(G1+GJ 

q = e -.(-•'
v) 

With the above limiting results, the following proposition may be shown. 
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Proposition B. 1  In the limit as K, L-*-<* , 

-G, 

^ln = ^lt = e  (1-V (3.20) 

S1 = G1 e lil-G2) (3.21) 

-G, 
q2n = ^t = e 

(3.22) 

-G, 
S2 . G2 e (3.23) 

-G 
G2 = 1 -e (3.24) 

-G, 
r    = n i\   = r    =  e t         s 

a    = n e                 11 ^\/s 

a    = 
t 

|          -(G2-
S2 

j 1  -e l/(G2-S 

a = e 
s 

(G9-S2)|   -(Gs-G0)| / 
11 -c     ^ 1/ (Gs-G2) 

Proof  The variables in the above equations are defined by Eqs. 

(B.3) - (B.14).  It suffices to show that limiting values of these vari- 

ables given by the proposition satisfy Eqs. (B.3) - {B.14) in the K, 

L-»-» limit.  This may be accomplished by assuming the proposition to be 

true, evaluating the RHSs of Eqs. (B.3) - (B.14) and shewing that they 

are equal to the corresponding IJLSs in the K, h * ' limit. 
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APPENDIX C 

DKRIVATION OF EQS.   (4.3)   AND   (4.4),   THEOREM 4.1 

AND  ITS  PROOF 

Derivation of Eg.   (4.3) 

By definition, 

'R+K 

.t + 1 u) = I - 1 FL 
y^o 

z^j   Pt+1(z 
yR+K=o\j=i   J 

t+i. 
Substituting Eqs. (4.1) and (4.2) for H  (^) , we have 

R+K 

y.-o      yR+K=o\j=i   ^   /xR+K=oi=o  ^ 1 ^ 
1^1 

where    x.   = y.       for i =  1,  2,   ...,  R+K-l 

X{m)   = 
0 m =   1 

m m ^  1 

and 

K 

f.xchanging the order of ti,^-  first  ;uid  last  summations,  and evaluating 

their sum. 
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Qt+1U) = I 
y2=o 

/ R+K \ 

v      =o\ i=2     J    /   x      =0 yR+K u x .1   - /    XR+K 

i+  I1 
K       K I   -   7r +   -rr- Pt(x) 

Letting    y.   =  x.       for i = 2,   3,   ...,   R+K    and rearranging. 

(R+K-l v 

v0   -w^=1 3   /\J=R+1 Jl 

a' 
■ -^ ptrx) 

1  i       1 
.XCx.)^ 

/ 

■ -[4 
X^R+^ 

P^x) 

which is given by Eq. (4.3) and its accompanying algorithm. 

(C.l) 

Derivation of Eq. (4.4) 

Define 

t-R-j 
h.   • = Prob[exactly  i  packets retransmitting 

from the (t-R-j)th slot to the tth slot] 

We then have, 
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CR-j-|^MM)BVR-j 

i = 0 

i =  1 

m-i 

(C.2) 

Now define 

:t-R-jr ,       y     i,   t-R-j } (z)  =   Zl   z h, J 

i=0        1 

Substituting Eqs.   (C.2)   into the above equation and sununing, we get 

m—i i m=u 

(C.3) 

Tinally. by the weak independence issumption for channel traffic and 

the assumption that ^he channel input V  is independent of the 

channel state, 

Q^z) = v'Cz) 1 i^"11^ (Z) re.4) 
j = l 

\.hich is the same as Fq. (4.4). 
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Theorem 4.1 and its proof 

Theorem 4.1 If the channel input is an independent Poisson 

process, then the channel traffic is Poisson distributed in the limit 

as K -^ oo under the weak independence assumption, such that 

and 

where 

Q^z) = e-
G ^^ 

n t  ^t -G 
P  = G e 

- i y f Gt-R-j . 
Kw 

rt-R-j -G 
G   •'e 

t-R-j 
♦ Sl 

Proof Since V  has a Poisson distribution, 

ut, ,   -Sc(l-z) 
V (z) = e  v  J 

Substituting it: into Eq. (4.4), we have 

j = l 

(C.5) 

Q (z) 

Consider 

Q^^j , 1 
■^+G

(K 
. i+ 1) , p t-R-i t Y p t-R-j i . .'.,,. 

K  K^    0       ^ Pi     | 1  v1 " 
i=l 
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where 

x-«-0    X 

Substituting Eq.   (C.6)   into F.q.   (C.5)  and letting K->• oo 

lim Q^z)  = e'S'(1"z)   77 
K*M j = l 

1 -(G'-'H - P '/"^^-(i) 

il/c^.p^-R-JJ^t 
(1-z) 

-  e 

= e-
G   n-z) (C.7) 

where 

j = l  \ 
.^M.s1 

(C.8) 

From Eq.   (C.7),  we get 

lirr. P^  = G1 e"G 

(C.9) 

Q.E.D. 
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APPENDIX D 

ALGORITHM 5.1, ITS DERIVATION AND 

SOME MONOTONE PROPFRTIES 

Algorithm S.l 

This algorithm solves for the variables ^h-n ^n the ^o1'' 

lowing set of (1 ♦ 1)  linear simultaneous equations, 

1 

to = h0 + > p  t (D.l) 
j=0  J     J 

I, 

t. = h. +  /  p. . t.    i = 1, 2, ..., I 
j=i-l  ■1  3 i   i 

(1)  Define 

e,« 1 

fj-O 

e. 
■I-1 " Pl.I-1 

I.I-l 

(2)  For i - I  1, I - 2, ..., 1 solve recursively 

(D.2) 
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e. 
i-1 »i.i-l 

I 

e. -    p. .   v . 

f. 1-'   ?i,i-i 

i 

(3)  Let 

i 

I 

^i = ei h ^ fi 
i = 0, 1, 2, ..., I - 1 

Deri vation of Al gorithm 5.1 

Define 

t. = e. t. + f- 
i   i I   i 

i = 0. 1, 2, ..., I - 1     Co.3) 

and 

I "' A 

fI = 0 

(D.4) 

The last equation in Fqs. (U.2) is 
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^ = hI ^ pI,I-l 'l-l * pII 'l 

Substituting tj 1 = e^ t. + fj^ into the above equation, we get 

h = hi + pi.i-i ei-i'i +pi,i-i fi-i + pn ^ 

Equating the coefficients of tT and the constant terms, we have 

1 - p II 
I- -1 Pl,l-1 

"1 
= 

hI 
I pI,I- •1 

(D.5) 

Eqs. (D.2) can be rewritten as follows, 

t. 
i"1 _ Pi.i-I 

i 

:. - h. - / p. • t. (D.6) 

In each of the above equations,  use Eqs.   (D.5)   to substitute for    t^  . 

We then have 

e.  , t, + f. i-1  M      H-l      p^^ 

/I 
j.   tT + f.   - h.   -( /    p. .  e. 

tP..f. 
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Equating the coefficients of    t.     and the  con3tant terms, we get 

i-l      p '      ^i,i-l 

1( 

e.   -     '   p. .  e. 

f. i-l      p.   .   . 

J = i 

f.   - h.   - 
i        i 

(D.7) 

I 

j=i    J   J 

From Eqs. (D.4), (D.5) and (0.7), e.  and f.  (i = 1-2, 1-3, ..., 1, 0) 

can then be determined recursively. 

We next solve for t  .  Tqs. {Ü.3)  are used to substitute for 

t.  in Eq. (D.l), which then becomes 

t. + f = h +( / pA. e. I tT + / Dn. f. 

I, 

Solving for t.  in the above equation, we have 

*! = 

Jo ^  " - ^ 
(0.8) 

Finally, t.(i =0, 1, 2, ..., T   11  can be obtained from Eqs. (D.3), 

I 

i 

since c., f.  and tT  are all known.  The derivation of Algorithm 
i'  i 

S.l is complete. 
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Some monotone properties 

We show below monotone properties of the sequences e.  and 

f.  in Algorithm 5.1. The transition probabilities p..  are assumed 

to be nonnegative and for each i = 1, 2, ... 

3=1-1 J 

Also, the probabilities p.   ,  are assumed to be nonzero.  (This r ri,i-l 

last is a necessary condition for the Markov process in Section 5.1.1 

to be irreducible.) 

Property D. 1 The sequence e.  is positive and uionotonically 

decreases to one as i increases to I . 

Proof From Eqs. (D.4) and (D.5), 

'i'1 

i - p n 
•I-1   Pi.i-i 

> 1 

The proof is by  induction.    Assume that    e„    decreases  as    I    increases 

for    i ^ ^ <    I   .     From Eqs.   (C.7) 

e.   ,   =   
i-l      p.       . Fi,i-1i 

I 

e.   -   /    D . .  e . 
3=1      J 

e, 
i 

I, 

1 "  A Pij 
 TL1 1 
Pi,i-1 

e. 
i 

Q.E.D. 
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Property D.2  (i) If h. > 0 , then the sequence f.  is nega- 

tive and monotonically increases to zero as  i increases to I . 

(ii) If h. < 0 , tiic sequence f.  is positive and monotonically de- 

creases to zero as i  increases to I . 

Proof (i) From Eqs. (l).4) and (D.5), 

fi = 0 

i-i 'i.i-i 

The proof is by induction.    Assume that    f«    increases  as    £    increases 

for    i  < i <    I   .     From Eqs.   (D.7) 

f. i-1       p.    ,   . 

I 
V 

f.   - h.   -   A  p..  f. 
J = i       J     J 

f. 1   "   £   Pij|  tl il < 
pi,i-i 

f. 

(ii) The proof is similar to that of (i) . 

Q.E.D. 
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APPENDIX E 

ALGORITHM 6.5, ITS DERIVATION AND 

SOME MONOTONE PROPERTIES 

Algorithm 6.5 

M 
This algorithm solves for g and (v.). ,  in the following set 

of (M + 1)  linear simultaneous equations, 

M 

*=C0+ I p  v (E.l) 
3 = 1 

M 

g ♦ v 
''l = Cl * %  P1J V3 (E'2) 

* v s C. +  Z  Pi. V.    i = 2, 3, ..., M 
j = i-l 1J -' 

(E.3) 

where 

M        M ' 

I P  ^  Z  Pi. = 1       LI. 2, ..., M    (E.4) 
j=0  J  j = i-l  -^ 

(1) Define 

bM-l 
1 

PM,M-) 

Vl 
CM 

PM,M-1 
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(2)   For i=M~l, M-2f...,2 solve recursively 

b. 
i-1  p. . . 

M- v 
b. + 1 - .'  p. . b. 

3 = 1  J  J 

d. 
i-1  p.   , 

^1,1-1 

M- 

d. - C - /. p.. d. 

(3)   Define 

^  p 
1__ 

10 

M-l 

lb, ♦ 1 - X p, • b. 
L 1     j-l 1J  J 

w.- « - — 
M    p 10 

M-i 

ui = "M + bi 
i = i, 2. .... M - ] 

w. = w.# ♦ d. i   M   i 

(4)   Let 

g = 

0  Ä l03  3 

poj uj 

v. =u. ß ♦ w. 
i   i 6   i 

i = 1, 2, ..., M 
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Derivation of Algorithm 6.5 

Define 

v.   =  u.   g ■♦• Vv 
i        i  6 i =  1,   2,   ...,  M (E.5) 

The  above equaiicns  are substituted  into Eqs.   (E.2)   and  (E.3)   for the 

variable    v.   .     Equating the coefficients of    g    and the constant 

terms  in th13 resulting equations, we obtain two sets of   M    linear 

simultaneous equations   in terms  of    (u.}.   .     and    ^-^j-i   : 

and 

M 

u,   =  -1 
j = l 

p. .  u. 

u.   =  -1  +     ?      p..  u. 

+ f 

i  =  2,   3,   ...,  M 

w.   =  C.   +     ^     p..  w. i  =  2,   3,   ...,  M 
3=1-1 

(E.6) 

(E.7) 
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Applying Algorithm S.i to Eqs. (E.6), we h^-e 

u. = e. v. 
i   i 

i = 1, 2, ..., M - 1      (E.8) 

and 

M 

bl - 1 - I Plj bj 
^l3 — 

3^ 
p. . e. - e, rlj  j   1 

(E.9) 

where we define 

eM=1 

bM = 0 

(E.10) 

1 - p MK 
"M-l  p 

M^-l 

1 
'M-l  p, M,M-1 

(E.ll) 

and for i = M - 1, M - 2, ..., 2 we solve recursively 

e. 
i-1   Pi,i-i 

e. 
i A Pij 'j 1 = 1  J     J 

b. 
i-i  p 

i.i-1 

M 

^ + i " ^ PiJ ^ 

(E.12) 
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Similarly,  applying Algorithm 5.1  to Eqs.   (E.7), we have 

w.  =  f.  wM * d. 1 « 1.  2,   ..., M -  1 
i i    M        i 

(E.13) 

bj'6 

WM =     H M 
(E,14) 

where we define 

v-1 

d

M^0 

(E.15) 

1   - PMM 

M-l      p M,M-1 
(E.16) 

V 
^M 

1 PM.M-I 

and for i = M - 1, M - 2, ..., 2 we solve recursively 

M 

f. 
1 

i-1  Pi.i-1 

I    - / p.. f. 

u . 
'-'   Pi.i-1 

d. -c. 

M 
V 
/  P.• d. 
j-i  1J  J 

(E,17) 
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We note from Eqs. (E.10)-(E.12) and Eqs. (E.15)-(E.17) that 

e. = f.  for 1=1,2,...,}^. We proceed to show that e. - f. = 1 

^or all i .  From Eqs. (E.10) and (E.ll) 

«V^1 

1 - p, MM 
'M-l PM,M-] 

- 1 

This last is true by virtue of Eqs. (E.4).  We now use induction and 

assume that 

^-1 £ = M, M - 1, ..., i 

Trom Eqs. (E..U i , 

e. . =   
i-l  P- • i ' ^1,1-1 L 

M 

. - / p. . e. 

d'1 

j M 

Fl,l-1 \    J-l 
= 1 

/ 

Thus,  by induction we have shown that    e.   =  f.   =  1     tor ^11    i  . 3 ii 

Using the preceding result,  the solution to the set of    M 

linear simultaneous  equations   in Eqs.   (E.6)  now becomes. 

i = "M ' bi U.    = i   =   1,   2,   . . ..   M -   1 (E.18) 
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and 

M-l 

•*--4 v-W'1 

where we define 

(E.20) 
H-1    PM,M-I 

and for i = M - 1, M - 2, ..., 2 we obtain recursively 

M-i 

■- ■ F-h V - I », \ rE.2i) 

Similarly, the solution to the set of M linear simultaneous 

equations in Eqs. (E.7) becoir: : 

j ■; - 1  ?      M _ i        lc.22) w. = w.. + d. i - 1, ^, . • •» • ^ 
i   M   i 

and 

M-l 

w = - -^- Id, - C,   2. p,. d. 
M    P10 \ ^      j = l U ^ 

(fc.23) 

where we define 

s H^ (E.24) 
^'^    PM,M-1 

and for i = M - 1. M - 2, .... 2 we obtain recursively 
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i.. = —— f a. - c. - y p. d. i 
F
I,I-I y j=i       -y 

d.   ,  = —-L-     d.   - C;   -   Z   p,,  d, (E.25) 

Using Eqs.   lE.B)  to substitute  for    v.     in Eq.   (E.l),  we cbtfein 

= Co + ( S poj UJ ) g + 2 P0i wi 

from which we get 

M 

C0 + S Poi Wj 
g =  P  (E.26) 

1 " I, *0i  "i 

Finall/i  v.  are obtained using Eqs. (E.S).  The derivation of 

Algorithm 6.5 is complete. 

Some monotone properties 

We show below monotone properties of the sequences b., d., u. 

imd w.  in Algorith 6.5.  The transition probabilities  p..  are 

assumed to satisfy Eqs. (E.l).  The probabilities p. . .  are assumed 

to be strictly positive.  (This last is a necessary condition for the 

Markov process in Section 6.3 to be irreducible.) 
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Property E.1    Tae sequence    b.    is positive and monotonically 

decreases  to    0    as    i    increases  to    M , 

Proof    From Eqs.   (R.10)  and  (E.U), 

bM = C 

VI = PM,M-I   >bM 

The proof is by induction. Assume that b* decreases as I    increases 

for i  $ l i' H ,     From Eqs. ft. 12) and (E.4) 

h 
i-1      Pi,!-] 

b. + i - 1 p.. b. 

1 + b. p. . , 
> b. 

'i.i-l 

Q.E.D. 

Property h.2  (i)  If C.  are positive, the sequence     is 

negative and monotonicallv increases to C as  i increase- to M . 

(ii)  If C  are negative, the sequence d.  is positive and mono- 

tonically decreases to 0 as i increases to M . 

Proof fhe proof uses Eqs. (E.4). (E.15), (E.16) and (E,17), and 

is similar to that of Property E.l. 
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Property E.3 The sequence u.  is negative and monctcnically 

decreases as i increases. 

Proof From Eq. (E.19) 

/       M-l 

u * - — I b, ♦ 1 - /. 
^    Pin\ 1 10 \ 1    j = i i3   •' 

■^ 

1 * bi p^o 

where b  is positive from Property E.l.  From Eq. (E.IB) 

"r "N * bj 

Applying Property E.l, the proof is  complete. 

Q.E.D. 

Property E.4  (i)  If C.  ^.re positive, the sequence w.  is 

positive ana monotonically increases as  i  increases, (ii)     if C. 

are negative, the sequence w.  is negative and monotonically decreases 

as  i  increases. 

Proof The proof uses Eqs. (E.22) and (F.23) and Property E.2. 

The proo^ is similar to that of Property E 3. 
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APPENDIX F 

A GENERAL DYNAMIC CHANNEL CONTROL PROCEDURE 

In this appendix, a dynamic channel control procedure is formu- 

lated which includes as special cases ICP, RCP and IRCP in Chapter 6. 

Lemma 6.3 and Theorem 6.4 on the equivalence of the performance mea- 

sures for ICP, RCP and IRCP are then extended to this general case. 

Consider the action space A. = {ß., ß^, ...., ß } where 
112 m 

0 < ß.  < ß^ <   ...  < ß    <  1,  and the action space    A    = (y., y^»   •••» i        Z m r <: i      J 

ykl    whf^re 0 < y    < Y2 <  •• "^ Y^ <  1.     Let A = A    * A      such that each 

element in    A    is a two-dimensional vector (ß, y).    As in Section 6.3, 

the Markov decision process    N    has a finite state space    S = (0,  1, 

2,   ....  M}.     A stationary control policy f    maps    S    into    A.     Given  a 

stationary control policy    f,  f(i)  =   (ß, y)  means that whenever N    = i, 

each  (new)  packet arrival  is  accepted with probability ß     (and rejected 

with probability  1  - ß) while each backlogged packet   Is  retransmitted 

with probability    y    in the    t      time slot.    Thus,  ICP corresponds to 

the special  case    A - {0,   l)  x {p )   ;  RCP corresponds to the special 

case    A = (l)  x {p  ^ p }   ;   IRCP corresponds to the special  case    A = 

(0,  1} *{p   .P ). 
o    c 

State Transition P.obabilities 

Suppose N is in state i and the stationary control policy 

f(i) - (B, y), then the one-step state transition probabilities are 

given by 

!86 



j  ^  i  .  2 

j  =  i  -   1 

hi™     - 

iY(l   - Y)1"^!   -  ßa)^1 

(1  - Y)1(M -  060(1  - ßa)M"i"1 

+ |l  - iY(i  - Y^'Ma  - Bo)^1    j = i 

1  -   (1-Y) 

M -  i 

j  -  i 

(M - nBo(l - 0a) M-i-1 j  = i * 1 

j  ^  i  ^ 2 

0  ^ i.  j  ^ M 

(F.l) 

Stationary Channel Throughput Rate 

Suppose N is in state i and f(i) = (ß, y),     Define the expected 

inuncdiate cost to be 

Ci^  =  -Sout(i'  ^ 

[iY(l  - Y)1"1^   - ßa)^5 

*  (1  - Y)1(M -  i)ßa(l  -  ßö)^1'1] (F.2) 

.t   . By Eq.   (6.9)   the cost  rate of N     is 

M 

=  -    y   TT,(f)   S    ,(i,   f) gs(f) 

Then, the stationary channel throughput rate is given by Eq. (6.30) 

which wc rewrite below. 

Sout - - M^ (F.5) 
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Average Packet Delay 

Suppose N    is  in state  i  and f(i)  «   (3, y)•     Define the expected 

immediate cost to be 

(:.(£)  =  i  +  (M -  i)(l  - ß)adr (F.4) 

where d is the expected cost in units of delay per packet arrival 

rejected and is equal to — (see Section 6.3.3). 

m 

Let S = U 5« where S , S2, ... , S are nonintersecting sets 

corresponding to a stationary control policy f such that 

f(i) = (ßp,  Y)  if and only if i e 5, 

where i =  1, 2, ..., m and y    is any action in A . 

By Eq. t6.9), the cost rate of N is 

M 

i=0 

M 

= ^ ^i^ ^ J (M-iXl -ß^ad^Cf) 

where 

= N + X d 
r r 

^ N + N (F.5) 

Xr = A y (M - i)(l - ß£)a TTjCf) (F.6) 

is the stationary packet rejection rate; N is the average channel back- 

log size and N  is the nvcragr number of rejected packets in the system. 
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Using Little's result [LITT 61] the average packet delay is given by Eq. 

(6.31) which we rewrite below. 

gd(f) 
n = -|— -^ R * i 

out 

gd(f) 
= - ^ + R < 1 (F.71 

We give below an extension of Lemma 6.3 to the general dynamic 

channel control procedure. 

Lemma F. 1 Given any stationary control policy f: S -► A 

gs(f) 
gd(f) = ^r * M 

Proof    From Eq.   (F.5)  and    d    s — 

M M 

gd(f)  »   S i ^^  +   S   CM -  i)  TT   (f) 0 i=0        1 1=0 
m 

(M - n Boo TT.rf) 
7 £=1  leSl 

L     1 

Note that 

m 

V L     /-   (M -  i)B^ a TT^f)     is just the stationary channel 

input  rate and is  thus  equal  to the  stationary channel  throughput rate 

S        =  -  g  (f).    Hence, out ''s 
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g.(« 
♦ M 

Q.E.D. 

With the above lemma. Theorem 6.4 can then be extended to the 

general dynamic channel contrcl procedure. 
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